Number of the records: 1  

Chemical technology

  1. Title statementChemical technology : an integral textbook / Andrea Jess and Peter Wasserscheid
    Personal name Jess, Andreas (author)
    PublicationWeinheim : Wiley-VCH, [2013]
    Copyright notice date©2013
    Phys.des.1 online zdroj (xxxvii, 850 stran) : ilustrace
    ISBN3527670629 (online ; pdf)
    9783527670628
    3527670610
    9783527670611
    EditionCourseSmart
    Internal Bibliographies/Indexes NoteObsahuje bibliografické odkazy a rejstřík
    ContentsChemical Technology: An Integral Textbook; Contents; Preface; Notation; 1 Introduction; 1.1 What is Chemical Technology?; 1.2 The Chemical Industry; 2 Chemical Aspects of Industrial Chemistry; 2.1 Stability and Reactivity of Chemical Bonds; 2.1.1 Factors that In.uence the Electronic Nature of Bonds and Atoms; 2.1.2 Steric Effects; 2.1.3 Classification of Reagents; 2.2 General Classification of Reactions; 2.2.1 Acid-Base Catalyzed Reactions; 2.2.2 Reactions via Free Radicals; 2.2.3 Nucleophilic Substitution Reactions; 2.2.4 Reactions via Carbocations.
    Content note2.2.5 Electrophilic Substitution Reactions at Aromatic Compounds2.2.6 Electrophilic Addition Reactions; 2.2.7 Nucleophilic Addition Reactions; 2.2.8 Asymmetric Synthesis; 2.3 Catalysis; 2.3.1 Introduction and General Aspects; 2.3.2 Homogeneous, Heterogeneous, and Biocatalysis; 2.3.3 Production and Characterization of Heterogeneous Catalysts; 2.3.4 Deactivation of Catalysts; 2.3.5 Future Trends in Catalysis Research; 3 Thermal and Mechanical Unit Operations; 3.1 Properties of Gases, Liquids, and Solids; 3.1.1 Ideal and Real Gas; 3.1.2 Heat Capacities and the Joule-Thomson Effect.. 3.1.3 Physical Transformations of Pure Substances: Vaporization and Melting3.1.4 Transport Properties (Diffusivity, Viscosity, Heat Conduction); 3.1.4.1 Basic Equations for Transfer of Heat, Mass, and Momentum; 3.1.4.2 Transport Coefficients of Gases; 3.1.4.3 Transport Coefficients of Liquids; 3.2 Heat and Mass Transfer in Chemical Engineering; 3.2.1 Heat Transport; 3.2.1.1 Heat Conduction; 3.2.1.2 Heat Transfer by Convection (Heat Transfer Coefficients); 3.2.1.3 Boiling Heat Transfer; 3.2.1.4 Heat Transfer by Radiation; 3.2.1.5 Transient Heat Transfer by Conduction and Convection.. 3.2.2 Mass Transport3.2.2.1 Forced Flow in Empty Tubes and Hydrodynamic Entrance Region; 3.2.2.2 Steady-State and Transient Diffusive Mass Transfer; 3.2.2.3 Diffusion in Porous Solids; 3.3 Thermal Unit Operations; 3.3.1 Heat Exchangers (Recuperators and Regenerators); 3.3.2 Distillation; 3.3.2.1 Distillation Principles; 3.3.2.2 Design of Distillation Columns (Ideal Mixtures); 3.3.2.3 Azeotropic, Extractive, and Pressure Swing Distillation; 3.3.2.4 Reactive Distillation; 3.3.3 Absorption (Gas Scrubbing); 3.3.3.1 Absorption Principles; 3.3.3.2 Design of Absorption Columns.. 3.3.4 Liquid-Liquid Extraction3.3.4.1 Extraction Principles; 3.3.4.2 Design of Extraction Processes; 3.3.5 Adsorption; 3.3.5.1 Adsorption Principles; 3.3.5.2 Design of Adsorption Processes; 3.3.6 Fluid-Solid Extraction; 3.3.6.1 Principles of Fluid-Solid Extraction; 3.3.6.2 Design of Fluid-Solid Extractions; 3.3.7 Crystallization; 3.3.7.1 Ideal Binary Eutectic Phase System; 3.3.7.2 Ideal Binary Phase System with Both Solids Completely Soluble in One Another; 3.3.8 Separation by Membranes; 3.3.8.1 Principles of Membrane Separation; 3.3.8.2 Applications of Membrane Separation Processes.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    NoteZpůsob přístupu: World Wide Web
    DefektyeBooks on EBSCOhost
    Another responsib. Wasserscheid, Peter, 1970- (author)
    Subj. Headings chemické inženýrství chemical engineering * chemická technologie chemical technology
    Form, Genre elektronické knihy electronic books
    Conspect66 - Chemický průmysl. Chemická technologie
    UDC 66 , 66.0 , (0.034.2:08)
    CountryNěmecko
    Languageangličtina
    Document kindElectronic sources
    URLhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=561494
    View book information on page www.obalkyknih.cz

    book

    Chemical technology

    The first major textbook to provide an integral and integrated treatment of industrial-relevant problems for students of both chemistry and chemical engineering. As such, this work combines the four disciplines of chemical technology -- chemistry, thermal and mechanical unit operations, chemical reaction engineering and general chemical technology -- and is organized into two main parts. The first covers the fundamentals, as well as the analysis and design of industrial processes, while the second section presents 30 concrete processes, exemplifying the inherent applied nature of chemical t.

    Chemical Technology: An Integral Textbook; Contents; Preface; Notation; 1 Introduction; 1.1 What is Chemical Technology?; 1.2 The Chemical Industry; 2 Chemical Aspects of Industrial Chemistry; 2.1 Stability and Reactivity of Chemical Bonds; 2.1.1 Factors that In.uence the Electronic Nature of Bonds and Atoms; 2.1.2 Steric Effects; 2.1.3 Classification of Reagents; 2.2 General Classification of Reactions; 2.2.1 Acid-Base Catalyzed Reactions; 2.2.2 Reactions via Free Radicals; 2.2.3 Nucleophilic Substitution Reactions; 2.2.4 Reactions via Carbocations.2.2.5 Electrophilic Substitution Reactions at Aromatic Compounds2.2.6 Electrophilic Addition Reactions; 2.2.7 Nucleophilic Addition Reactions; 2.2.8 Asymmetric Synthesis; 2.3 Catalysis; 2.3.1 Introduction and General Aspects; 2.3.2 Homogeneous, Heterogeneous, and Biocatalysis; 2.3.3 Production and Characterization of Heterogeneous Catalysts; 2.3.4 Deactivation of Catalysts; 2.3.5 Future Trends in Catalysis Research; 3 Thermal and Mechanical Unit Operations; 3.1 Properties of Gases, Liquids, and Solids; 3.1.1 Ideal and Real Gas; 3.1.2 Heat Capacities and the Joule-Thomson Effect.3.1.3 Physical Transformations of Pure Substances: Vaporization and Melting3.1.4 Transport Properties (Diffusivity, Viscosity, Heat Conduction); 3.1.4.1 Basic Equations for Transfer of Heat, Mass, and Momentum; 3.1.4.2 Transport Coefficients of Gases; 3.1.4.3 Transport Coefficients of Liquids; 3.2 Heat and Mass Transfer in Chemical Engineering; 3.2.1 Heat Transport; 3.2.1.1 Heat Conduction; 3.2.1.2 Heat Transfer by Convection (Heat Transfer Coefficients); 3.2.1.3 Boiling Heat Transfer; 3.2.1.4 Heat Transfer by Radiation; 3.2.1.5 Transient Heat Transfer by Conduction and Convection.3.2.2 Mass Transport3.2.2.1 Forced Flow in Empty Tubes and Hydrodynamic Entrance Region; 3.2.2.2 Steady-State and Transient Diffusive Mass Transfer; 3.2.2.3 Diffusion in Porous Solids; 3.3 Thermal Unit Operations; 3.3.1 Heat Exchangers (Recuperators and Regenerators); 3.3.2 Distillation; 3.3.2.1 Distillation Principles; 3.3.2.2 Design of Distillation Columns (Ideal Mixtures); 3.3.2.3 Azeotropic, Extractive, and Pressure Swing Distillation; 3.3.2.4 Reactive Distillation; 3.3.3 Absorption (Gas Scrubbing); 3.3.3.1 Absorption Principles; 3.3.3.2 Design of Absorption Columns.3.3.4 Liquid-Liquid Extraction3.3.4.1 Extraction Principles; 3.3.4.2 Design of Extraction Processes; 3.3.5 Adsorption; 3.3.5.1 Adsorption Principles; 3.3.5.2 Design of Adsorption Processes; 3.3.6 Fluid-Solid Extraction; 3.3.6.1 Principles of Fluid-Solid Extraction; 3.3.6.2 Design of Fluid-Solid Extractions; 3.3.7 Crystallization; 3.3.7.1 Ideal Binary Eutectic Phase System; 3.3.7.2 Ideal Binary Phase System with Both Solids Completely Soluble in One Another; 3.3.8 Separation by Membranes; 3.3.8.1 Principles of Membrane Separation; 3.3.8.2 Applications of Membrane Separation Processes.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.