Number of the records: 1
nelineární dynamika
SYS d017711 LBL 01642nz--a2200313n--4500 003 CZ-PrNML 005 20240206162307.5 008 921228-n-ancnnbaba----------||-ana-----d 035 $a (DNLM)D017711 040 $a ABA008 $b cze $f czmesh 072 $a E05. $x 599. $x 850 072 $a H01. $x 548. $x 675 150 $a nelineární dynamika $2 czmesh 450 $w i $a Chaos Theory $i UF 450 $w i $a Models, Nonlinear $i UF 450 $w i $a modely nelineární $i UF 450 $w i $a Non-linear Dynamics $i UF 450 $w i $a Non-linear Models $i UF 450 $w i $a teorie chaosu $i UF 550 $w g $a matematika $7 upol_us_auth*d008433 550 $w g $a teoretické modely $7 upol_us_auth*d008962 550 $w i $a fraktály $i RT $7 upol_us_auth*d017709 667 $a a math principle applied to theoret models 680 $i The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. 688 $a 94 750 -2
$a Nonlinear Dynamics $2 czmesh 980 $x M 982 $a 1
Number of the records: 1