Number of the records: 1  

nelineární dynamika

  1. SYSd017711
    LBL
      
    01642nz--a2200313n--4500
    003
      
    CZ-PrNML
    005
      
    20240206162307.5
    008
      
    921228-n-ancnnbaba----------||-ana-----d
    035
      
    $a (DNLM)D017711
    040
      
    $a ABA008 $b cze $f czmesh
    072
      
    $a E05. $x 599. $x 850
    072
      
    $a H01. $x 548. $x 675
    150
      
    $a nelineární dynamika $2 czmesh
    450
      
    $w i $a Chaos Theory $i UF
    450
      
    $w i $a Models, Nonlinear $i UF
    450
      
    $w i $a modely nelineární $i UF
    450
      
    $w i $a Non-linear Dynamics $i UF
    450
      
    $w i $a Non-linear Models $i UF
    450
      
    $w i $a teorie chaosu $i UF
    550
      
    $w g $a matematika $7 upol_us_auth*d008433
    550
      
    $w g $a teoretické modely $7 upol_us_auth*d008962
    550
      
    $w i $a fraktály $i RT $7 upol_us_auth*d017709
    667
      
    $a a math principle applied to theoret models
    680
      
    $i The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos.
    688
      
    $a 94
    750
    -2
    $a Nonlinear Dynamics $2 czmesh
    980
      
    $x M
    982
      
    $a 1
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.