Number of the records: 1  

Structure and evolution of single stars

  1. Title statementStructure and evolution of single stars : an introduction / James MacDonald. [elektronický zdroj]
    PublicationSan Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2015]
    DistributionBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2015]
    Phys.des.1 online resource (various pagings) : illustrations (some color).
    ISBN9781681741055 (online)
    9781681742335 mobi
    Edition[IOP release 2]
    IOP concise physics, ISSN 2053-2571
    Note"Version: 20151101"--Title page verso.
    "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
    Internal Bibliographies/Indexes NoteIncludes bibliographical references.
    ContentsPreface -- 1. Observational background -- 1.1. Distances -- 1.2. Stellar brightness and luminosity -- 1.3. Colors -- 1.4. Spectroscopy -- 1.5. Color-magnitude diagrams -- 1.6. Stellar masses -- 1.7. The mass-luminosity relation for main sequence stars -- 1.8. The mass-radius relation for main sequence stars
    Content note2. The equations of stellar structure : mass conservation and hydrostatic equilibrium -- 2.1. Introduction -- 2.2. The mass conservation equation -- 2.3. The hydrostatic equilibrium equation for a spherical star -- 2.4. The dynamical time scale -- 2.5. The central temperature of the Sun -- 2.6. The central temperatures of main sequence stars -- 2.7. Radiation pressure. 3. Energy considerations, the source of the Sun's energy, and energy transport -- 3.1. Introduction -- 3.2. The virial theorem -- 3.3. The virial theorem for stars in hydrostatic equilibrium -- 3.4. The conservation of energy equation for a star in hydrostatic equilibrium -- 3.5. Stars in thermal equilibrium -- 3.6. Energy transport -- 3.7. The equation of radiative transfer -- 3.8. Optical depth and effective temperature -- 3.9. Validity of the diffusion approximation. 4. Convective energy transport -- 4.1. Introduction -- 4.2. The Schwarzschild criterion for convective instability -- 4.3. Including convective energy transport in stellar models. 5. The equations of stellar evolution and how to solve them -- 5.1. Introduction -- 5.2. The equations of stellar structure -- 5.3. The physical significance of the Eddington luminosity -- 5.4. Equations for composition changes -- 5.5. Solving the equations of stellar evolution -- 5.6. The Newton-Raphson method -- 5.7. Sets of non-linear equations. 6. Physics of gas and radiation -- 6.1. Introduction -- 6.2. The ideal gas equation of state -- 6.3. The radiation equation of state -- 6.4. The equation of state for a mixture of ideal gas and radiation -- 6.5. The Eddington standard model of stellar structure. 7. Ionization and recombination -- 7.1. Introduction -- 7.2. The Boltzmann excitation equation -- 7.3. The Saha ionization equation -- 7.4. A difficulty and its resolution -- 7.5. Ionization of hydrogen -- 7.6. The effect of ionization on the adiabatic gradient -- 7.7. The effect of ionization on the specific heat -- 7.8. Pressure ionization -- 7.9. Free energy approach to ionization -- 7.10. A crude model for inclusion of pressure ionization in a thermodynamically consistent way. 8. The degenerate electron gas -- 8.1. Introduction -- 8.2. Complete electron degeneracy -- 8.3. Limiting forms -- 8.4. The contribution from nuclei at zero temperature -- 8.5. Transition from non-degeneracy to degeneracy -- 8.6. Effects of degeneracy on the adiabatic gradient and the first adiabatic exponent. 9. Polytropes and the Chandrasekhar mass -- 9.1. Introduction -- 9.2. The Lane-Emden equation -- 9.3. Application to white dwarf stars. 10. Opacity -- 10.1. Introduction -- 10.2. The Rosseland mean opacity -- 10.3. Opacity mechanisms -- 10.4. Electron scattering opacity -- 10.5. Free-free opacity -- 10.6. Bound-free opacity -- 10.7. Bound-bound opacity -- 10.8. The Rosseland mean opacity for solar composition material. 11. Nuclear reactions -- 11.1. Introduction -- 11.2. Occurrence of thermonuclear reactions -- 11.3. Cross sections and nuclear reaction rates -- 11.4. The cross section -- 11.5. Evaluation of the reaction rate -- 11.6. Major nuclear burning stages in stars : H burning -- 11.7. Energy generation in the pp-chains and the CNO-cycles -- 11.8. Major nuclear burning stages in stars : He burning -- 11.9. Advanced nuclear burning phases. 12. Neutrino energy loss processes -- 12.1. Pair annihilation neutrino process (e+ + e- [right arrow] [nu] + [nu][superscript bar]) -- 12.2. Plasma neutrino process ([gramma]plasmon [right arrow] [nu] + [nu][superscript bar]) -- 12.3. Photo-neutrino process ([gamma] + e [right arrow] e + [nu] + [nu][superscript bar]) -- 12.4. Bremsstrahlung neutrino process. 13. Homology relations -- 13.1. Introduction -- 13.2. Homology of zero age main sequence stars -- 13.3. Sensitivity of stellar structure to nuclear reaction rate -- 13.4. Sensitivity of stellar properties to composition -- 13.5. Stars with convective cores -- 13.6. Stars with convective envelopes. 14. Hydrogen main sequence stars -- 14.1. Masses of main sequence stars -- 14.2. Lifetimes of main sequence stars -- 14.3. Convection in main sequence stars -- 14.4. Variation of surface properties with mass -- 14.5. Variation of central properties with mass -- 14.6. The theoretical Hertzsprung-Russell diagram. 15. Helium main sequence stars -- 15.1. Why consider helium main sequence stars? -- 15.2. Homology analysis of helium zero age main sequence stars -- 15.3. Convection in helium main sequence stars -- 15.4. Variation of surface properties with mass -- 15.5. Variation of central properties with mass -- 15.6. The theoretical Hertzsprung-Russell diagram. 16. The Hayashi line -- 16.1. Introduction -- 16.2. The Hayashi phase. 17. Star formation -- 17.1. Introduction -- 17.2. The Jeans mass -- 17.3. Fragmentation. 18. Evolution on the main sequence and beyond -- 18.1. Introduction -- 18.2. Change in luminosity on the main sequence -- 18.3. Evolution of the hydrogen profile -- 18.4. Evolution after hydrogen exhaustion in the core -- 18.5. The Hertzsprung gap. 19. Evolution on the red giant branch -- 19.1. Introduction -- 19.2. Change in luminosity on the red giant branch -- 19.3. The globular cluster luminosity function bump -- 19.4. The helium core flash -- 19.5. Stability considerations. 20. Evolution from red giant to white dwarf -- 20.1. Introduction -- 20.2. The horizontal branch -- 20.3. The asymptotic giant branch -- 20.4. The formation of planetary nebulae -- 20.5. The cooling of white dwarfs -- 20.6. The luminosity function of white dwarfs -- 20.7. Masses of white dwarf stars : observational material. 21. Evolution of massive stars -- 21.1. Introduction -- 21.2. Composition changes in the core -- 21.3. Evolution after the end of core helium burning -- 21.4. Evolution of stars more massive than 8 M[circled dot operator].
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    AudienceUpper-level undergraduate and first year graduate students.
    NoteZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader.
    Another responsib. Morgan & Claypool Publishers,
    Institute of Physics (Great Britain),
    Subj. Headings Stars - Structure. * Stars - Evolution. * SCIENCE / Astronomy. * Galaxies and Stars.
    Form, Genre elektronické knihy electronic books
    CountryKalifornie
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    Structure and Evolution of Single Stars: An introduction is intended for upper-level undergraduates and beginning graduates with a background in physics. Following a brief overview of the background observational material, the basic equations describing the structure and evolution of single stars are derived. The relevant physical processes, which include the equation of state, opacity, nuclear reactions and neutrino losses are then reviewed. Subsequent chapters describe the evolution of low-mass stars from formation to the final white dwarf phase. The final chapter deals with the evolution of massive stars.

    Preface -- 1. Observational background -- 1.1. Distances -- 1.2. Stellar brightness and luminosity -- 1.3. Colors -- 1.4. Spectroscopy -- 1.5. Color-magnitude diagrams -- 1.6. Stellar masses -- 1.7. The mass-luminosity relation for main sequence stars -- 1.8. The mass-radius relation for main sequence stars2. The equations of stellar structure : mass conservation and hydrostatic equilibrium -- 2.1. Introduction -- 2.2. The mass conservation equation -- 2.3. The hydrostatic equilibrium equation for a spherical star -- 2.4. The dynamical time scale -- 2.5. The central temperature of the Sun -- 2.6. The central temperatures of main sequence stars -- 2.7. Radiation pressure3. Energy considerations, the source of the Sun's energy, and energy transport -- 3.1. Introduction -- 3.2. The virial theorem -- 3.3. The virial theorem for stars in hydrostatic equilibrium -- 3.4. The conservation of energy equation for a star in hydrostatic equilibrium -- 3.5. Stars in thermal equilibrium -- 3.6. Energy transport -- 3.7. The equation of radiative transfer -- 3.8. Optical depth and effective temperature -- 3.9. Validity of the diffusion approximation4. Convective energy transport -- 4.1. Introduction -- 4.2. The Schwarzschild criterion for convective instability -- 4.3. Including convective energy transport in stellar models5. The equations of stellar evolution and how to solve them -- 5.1. Introduction -- 5.2. The equations of stellar structure -- 5.3. The physical significance of the Eddington luminosity -- 5.4. Equations for composition changes -- 5.5. Solving the equations of stellar evolution -- 5.6. The Newton-Raphson method -- 5.7. Sets of non-linear equations6. Physics of gas and radiation -- 6.1. Introduction -- 6.2. The ideal gas equation of state -- 6.3. The radiation equation of state -- 6.4. The equation of state for a mixture of ideal gas and radiation -- 6.5. The Eddington standard model of stellar structure7. Ionization and recombination -- 7.1. Introduction -- 7.2. The Boltzmann excitation equation -- 7.3. The Saha ionization equation -- 7.4. A difficulty and its resolution -- 7.5. Ionization of hydrogen -- 7.6. The effect of ionization on the adiabatic gradient -- 7.7. The effect of ionization on the specific heat -- 7.8. Pressure ionization -- 7.9. Free energy approach to ionization -- 7.10. A crude model for inclusion of pressure ionization in a thermodynamically consistent way8. The degenerate electron gas -- 8.1. Introduction -- 8.2. Complete electron degeneracy -- 8.3. Limiting forms -- 8.4. The contribution from nuclei at zero temperature -- 8.5. Transition from non-degeneracy to degeneracy -- 8.6. Effects of degeneracy on the adiabatic gradient and the first adiabatic exponent9. Polytropes and the Chandrasekhar mass -- 9.1. Introduction -- 9.2. The Lane-Emden equation -- 9.3. Application to white dwarf stars10. Opacity -- 10.1. Introduction -- 10.2. The Rosseland mean opacity -- 10.3. Opacity mechanisms -- 10.4. Electron scattering opacity -- 10.5. Free-free opacity -- 10.6. Bound-free opacity -- 10.7. Bound-bound opacity -- 10.8. The Rosseland mean opacity for solar composition material11. Nuclear reactions -- 11.1. Introduction -- 11.2. Occurrence of thermonuclear reactions -- 11.3. Cross sections and nuclear reaction rates -- 11.4. The cross section -- 11.5. Evaluation of the reaction rate -- 11.6. Major nuclear burning stages in stars : H burning -- 11.7. Energy generation in the pp-chains and the CNO-cycles -- 11.8. Major nuclear burning stages in stars : He burning -- 11.9. Advanced nuclear burning phases12. Neutrino energy loss processes -- 12.1. Pair annihilation neutrino process (e+ + e- [right arrow] [nu] + [nu][superscript bar]) -- 12.2. Plasma neutrino process ([gramma]plasmon [right arrow] [nu] + [nu][superscript bar]) -- 12.3. Photo-neutrino process ([gamma] + e [right arrow] e + [nu] + [nu][superscript bar]) -- 12.4. Bremsstrahlung neutrino process13. Homology relations -- 13.1. Introduction -- 13.2. Homology of zero age main sequence stars -- 13.3. Sensitivity of stellar structure to nuclear reaction rate -- 13.4. Sensitivity of stellar properties to composition -- 13.5. Stars with convective cores -- 13.6. Stars with convective envelopes14. Hydrogen main sequence stars -- 14.1. Masses of main sequence stars -- 14.2. Lifetimes of main sequence stars -- 14.3. Convection in main sequence stars -- 14.4. Variation of surface properties with mass -- 14.5. Variation of central properties with mass -- 14.6. The theoretical Hertzsprung-Russell diagram15. Helium main sequence stars -- 15.1. Why consider helium main sequence stars? -- 15.2. Homology analysis of helium zero age main sequence stars -- 15.3. Convection in helium main sequence stars -- 15.4. Variation of surface properties with mass -- 15.5. Variation of central properties with mass -- 15.6. The theoretical Hertzsprung-Russell diagram16. The Hayashi line -- 16.1. Introduction -- 16.2. The Hayashi phase17. Star formation -- 17.1. Introduction -- 17.2. The Jeans mass -- 17.3. Fragmentation18. Evolution on the main sequence and beyond -- 18.1. Introduction -- 18.2. Change in luminosity on the main sequence -- 18.3. Evolution of the hydrogen profile -- 18.4. Evolution after hydrogen exhaustion in the core -- 18.5. The Hertzsprung gap19. Evolution on the red giant branch -- 19.1. Introduction -- 19.2. Change in luminosity on the red giant branch -- 19.3. The globular cluster luminosity function bump -- 19.4. The helium core flash -- 19.5. Stability considerations20. Evolution from red giant to white dwarf -- 20.1. Introduction -- 20.2. The horizontal branch -- 20.3. The asymptotic giant branch -- 20.4. The formation of planetary nebulae -- 20.5. The cooling of white dwarfs -- 20.6. The luminosity function of white dwarfs -- 20.7. Masses of white dwarf stars : observational material21. Evolution of massive stars -- 21.1. Introduction -- 21.2. Composition changes in the core -- 21.3. Evolution after the end of core helium burning -- 21.4. Evolution of stars more massive than 8 M[circled dot operator].

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.