Number of the records: 1
Computational approaches in physics
Title statement Computational approaches in physics / Maria Fyta. [elektronický zdroj] Publication San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016] Distribution Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016] Phys.des. 1 online resource (various pagings) : illustrations (some color). ISBN 9781681744179 (online) 9781681744193 mobi Edition [IOP release 3] IOP concise physics, ISSN 2053-2571 Note "Version: 20161001"--Title page verso. "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. Internal Bibliographies/Indexes Note Includes bibliographical references. Contents Preface -- 1. Introduction -- 1.1. Computational physics Content note 2. Quantum-mechanical methods -- 2.1. General remarks -- 2.2. The Hartree-Fock method -- 2.3. Post HF schemes -- 2.4. Density functional theory (DFT) -- 2.5. Time-dependent density functional theory (TDDFT) -- 2.6. Ab initio MD and electronic structure -- 2.7. Semi-empirical methods. 3. Atomistic methods -- 3.1. Classical molecular dynamics -- 3.2. Setting environment conditions -- 3.3. Integration schemes -- 3.4. General remarks on MD. 4. Classical potentials and force fields -- 4.1. Classical pair potentials -- 4.2. Multi-body reactive force fields -- 4.3. Force fields for biomolecules -- 4.4. Embedded atom method (EAM) -- 4.5. Water models. 5. Mesoscopic particle methods -- 5.1. Simulation of fluids -- 5.2. Continuum methods -- 5.3. Dissipative particle dynamics -- 5.4. Lattice methods. 6. The Monte Carlo method -- 6.1. Random numbers -- 6.2. Classical Monte Carlo -- 6.3. Quantum Monte Carlo (QMC). 7. Multiscale, hybrid, and coarse-grained methods -- 7.1. Coarse-graining -- 7.2. Multiscale or hybrid schemes. 8. Other common aspects -- 8.1. Search and sampling of the configuration space, energy minimization -- 8.2. Free energy methods -- 8.3. Dealing with electrostatics/electrokinetics -- 8.4. Example codes. Notes to Availability Přístup pouze pro oprávněné uživatele Audience Advanced students and researchers. Note Způsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader. Another responsib. Morgan & Claypool Publishers, Institute of Physics (Great Britain), Subj. Headings Physics - Methodology. * Mathematical physics. * Mathematical Physics. * SCIENCE / Physics / Mathematical & Computational. Form, Genre elektronické knihy electronic books Country Kalifornie Language angličtina Document kind Electronic books URL Plný text pro studenty a zaměstnance UPOL book
Computational Approaches in Physics reviews computational schemes which are used in the simulations of physical systems. These range from very accurate ab initio techniques up to coarse-grained and mesoscopic schemes. The choice of the method is based on the desired accuracy and computational efficiency. A bottom-up approach is used to present the various simulation methods used in Physics, starting from the lower level and the most accurate methods, up to particle-based ones. The book outlines the basic theory underlying each technique and its complexity, addresses the computational implications and issues in the implementation, as well as present representative examples. A link to the most common computational codes, commercial or open source is listed in each chapter. The strengths and deficiencies of the variety of techniques discussed in this book are presented in detail and visualization tools commonly used to make the simulation data more comprehensive are also discussed. In the end, specific techniques are used as bridges across different disciplines. To this end, examples of different systems tackled with the same methods are presented. The appendices include elements of physical theory which are prerequisites in understanding the simulation methods.
Preface -- 1. Introduction -- 1.1. Computational physics2. Quantum-mechanical methods -- 2.1. General remarks -- 2.2. The Hartree-Fock method -- 2.3. Post HF schemes -- 2.4. Density functional theory (DFT) -- 2.5. Time-dependent density functional theory (TDDFT) -- 2.6. Ab initio MD and electronic structure -- 2.7. Semi-empirical methods3. Atomistic methods -- 3.1. Classical molecular dynamics -- 3.2. Setting environment conditions -- 3.3. Integration schemes -- 3.4. General remarks on MD4. Classical potentials and force fields -- 4.1. Classical pair potentials -- 4.2. Multi-body reactive force fields -- 4.3. Force fields for biomolecules -- 4.4. Embedded atom method (EAM) -- 4.5. Water models5. Mesoscopic particle methods -- 5.1. Simulation of fluids -- 5.2. Continuum methods -- 5.3. Dissipative particle dynamics -- 5.4. Lattice methods6. The Monte Carlo method -- 6.1. Random numbers -- 6.2. Classical Monte Carlo -- 6.3. Quantum Monte Carlo (QMC)7. Multiscale, hybrid, and coarse-grained methods -- 7.1. Coarse-graining -- 7.2. Multiscale or hybrid schemes8. Other common aspects -- 8.1. Search and sampling of the configuration space, energy minimization -- 8.2. Free energy methods -- 8.3. Dealing with electrostatics/electrokinetics -- 8.4. Example codes.
Number of the records: 1