Number of the records: 1  

Essential classical mechanics for device physics

  1. Title statementEssential classical mechanics for device physics / A.F.J. Levi. [elektronický zdroj]
    PublicationSan Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016]
    DistributionBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
    Phys.des.1 online resource (various pagings) : illustrations (some color).
    ISBN9781681744131 (online)
    9781681744155 mobi
    Edition[IOP release 3]
    IOP concise physics, ISSN 2053-2571
    Note"Version: 20160901"--Title page verso.
    "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
    Internal Bibliographies/Indexes NoteIncludes bibliographical references.
    ContentsPreface -- 1 Concepts in classical mechanics -- 1.1. The quantum-classical boundary -- 1.2. Separation of scales and constraints -- 1.3. Newtonian mechanics -- 1.4. The one-dimensional simple harmonic oscillator -- 1.5. Generalization -- 1.6. Increasing complexity to discover new phenomena
    Content note2. Lattice vibrations -- 2.1. Harmonic oscillation of a diatomic molecule -- 2.2. Beyond harmonic oscillation of a diatomic molecule -- 2.3. The dispersion relation and symmetry -- 2.4. Lattice vibrations in semiconductors. 3. Driven oscillation -- 3.1. The damped oscillator subject to an external harmonic force -- 3.2. Coupled oscillator normal modes and beats -- 3.3. Coupled damped oscillator. 4. Transient dynamics of driven oscillation -- 4.1. The Runge-Kutta method -- 4.2. Phasor diagram of a harmonically driven damped oscillator -- 4.3. Control of a harmonically driven damped oscillator -- 4.4. Transient dynamics of a harmonically driven damped non-harmonic oscillator -- 4.5. Control of systems with chaotic motion -- 4.6. Noise -- 4.7. Diffusion and mobility. 5. The Lorentz oscillator model -- 5.1. Isotropic materials with a linear local response -- 5.2. Electric susceptibility of an insulating dielectric -- 5.3. The Kramers-Kronig relation -- 5.4. The transverse dielectric permittivity function -- 5.5. Propagation of electromagnetic waves in a dielectric medium -- 5.6. An electromagnetic plane-wave at normal incidence -- 5.7. Reflectance -- 5.8. Normal and anomalous dispersion -- 5.9. Permittivity due to longitudinal polar-optic phonons -- 5.10. The loss function. 6. The Drude model -- 6.1. DC conductivity -- 6.2. AC conductivity -- 6.3. Kinetic inductance -- 6.4. Permittivity of metal -- 6.5. Physical origin of plasma frequency -- 6.6. An electromagnetic field interacting with a metal -- 6.7. Drude dispersion of electromagnetic radiation -- 6.8. Changing the properties of a metal -- Appendices -- A. Physical values A-1 -- B. Maxwell's equations.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    NoteZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader.
    Another responsib. Morgan & Claypool Publishers,
    Institute of Physics (Great Britain),
    Subj. Headings Semiconductors - Design and construction. * Electronic Devices and Materials. * Materials Science. * Nanotechnology. * TECHNOLOGY & ENGINEERING / Electronics / Microelectronics.
    Form, Genre elektronické knihy electronic books
    CountryKalifornie
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    Continued advances in the precision manufacturing of new structures at the nanometer scale have provided unique opportunities for device physics. This book sets out to summarize those elements of classical mechanics most applicable for scientists and engineers studying device physics. Supplementary MATLAB{reg} materials are available for all figures generated numerically.

    Preface -- 1 Concepts in classical mechanics -- 1.1. The quantum-classical boundary -- 1.2. Separation of scales and constraints -- 1.3. Newtonian mechanics -- 1.4. The one-dimensional simple harmonic oscillator -- 1.5. Generalization -- 1.6. Increasing complexity to discover new phenomena2. Lattice vibrations -- 2.1. Harmonic oscillation of a diatomic molecule -- 2.2. Beyond harmonic oscillation of a diatomic molecule -- 2.3. The dispersion relation and symmetry -- 2.4. Lattice vibrations in semiconductors3. Driven oscillation -- 3.1. The damped oscillator subject to an external harmonic force -- 3.2. Coupled oscillator normal modes and beats -- 3.3. Coupled damped oscillator4. Transient dynamics of driven oscillation -- 4.1. The Runge-Kutta method -- 4.2. Phasor diagram of a harmonically driven damped oscillator -- 4.3. Control of a harmonically driven damped oscillator -- 4.4. Transient dynamics of a harmonically driven damped non-harmonic oscillator -- 4.5. Control of systems with chaotic motion -- 4.6. Noise -- 4.7. Diffusion and mobility5. The Lorentz oscillator model -- 5.1. Isotropic materials with a linear local response -- 5.2. Electric susceptibility of an insulating dielectric -- 5.3. The Kramers-Kronig relation -- 5.4. The transverse dielectric permittivity function -- 5.5. Propagation of electromagnetic waves in a dielectric medium -- 5.6. An electromagnetic plane-wave at normal incidence -- 5.7. Reflectance -- 5.8. Normal and anomalous dispersion -- 5.9. Permittivity due to longitudinal polar-optic phonons -- 5.10. The loss function6. The Drude model -- 6.1. DC conductivity -- 6.2. AC conductivity -- 6.3. Kinetic inductance -- 6.4. Permittivity of metal -- 6.5. Physical origin of plasma frequency -- 6.6. An electromagnetic field interacting with a metal -- 6.7. Drude dispersion of electromagnetic radiation -- 6.8. Changing the properties of a metal -- Appendices -- A. Physical values A-1 -- B. Maxwell's equations.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.