Number of the records: 1  

Electron paramagnetic resonance of transition ions

  1. Title statementElectron paramagnetic resonance of transition ions / by A. Abragam and B. Bleaney
    Personal name Abragam, Anatole, 1914-2011 (author)
    PublicationOxford : Oxford University Press, [2012]
    Copyright notice date©2012
    Phys.des.1 online zdroj (xiv, 911 stran) : ilustrace
    ISBN0191023000 (online ; pdf)
    9780191023002
    EditionOxford Classic Texts in the Physical Sciences
    Note"Unabridged and corrected republication of the work first published by the Clarendon Press (Oxford University Press) in 1970 in the International series of monographs on physics"--Title page verso.
    Internal Bibliographies/Indexes NoteObsahuje bibliografické odkazy a rejstříky
    ContentsCover; CONTENTS; PART I: PRELIMINARY SURVEY; 1. INTRODUCTION TO ELECTRON PARAMAGNETIC RESONANCE; 1.1. Electronic and nuclear magnetic dipole moments; 1.2. Hyperfine structure in a free atom or ion; 1.3. Magnetic resonance; 1.4. Effective spin and anisotropy; 1.5. 'Initial splittings' or 'fine structure'; 1.6. Magnetic hyperfine structure; 1.7. Hyperfine structure including nuclear electric quadrupole interaction; 1.8. A simple example; 1.9. Transition group ions and ligand fields; 1.10. Spin-spin interaction; 1.11. Spin-lattice interaction; 1.12. Dynamic nuclear orientation; 1.13. Endor.
    Content note1.14. Experimental aspectsPART II: GENERAL SURVEY; 2. THE RESONANCE PHENOMENON; 2.1. Use of rotating coordinates; 2.2. Magnetic resonance; 2.3. Quantum-mechanical analysis; 2.4. Magnetic resonance in aggregated systems; 2.5. Adiabatic rapid passage; 2.6. Relaxation effects; 2.7. Radio-frequency pulses and spin-echoes; 2.8. Solution of the macroscopic equations for slow passage; 2.9. Intensity and line width; 2.10. Spectrometer sensitivity; 3. THE SPIN HAMILTONIAN AND THE SPECTRUM; 3.1. The spin Hamiltonian; 3.2. The effect of anisotropy in the g-factor; 3.3. Multipole fine structure.. 3.4. Fine structure in cubic fields (S = 5/2, 7/2)3.5. Electronic 'quadrupole' fine structure (S = 1, 8/2); 3.6. Electronic 'quadrupole' fine structure in a strong magnetic field; 3.7. Hyperfine structure I-introductory remarks; 3.8. Hyperfine structure II-strong external field; 3.9. Hyperfine structure III-nuclear electric quadrupole interaction; 3.10. 'Forbidden' hyperfine transitions; 3.11. Ligand hyperfine structure; 3.12. The spectrum of a powder; 3.13. Effects of crystal imperfections; 3.14. Weak-field Zeeman interaction for non-Kramers ions; 4. ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR).. 4.1. Introduction4.2. The Endor spectrum; 4.3. Enhancement of the nuclear transition probability; 4.4. Endor on donors in silicon; 4.5. Endor on donors in silicon-relaxation effects; 4.6. Relaxation effects in Endor-general; 4.7. The hyperfine structure of europium; 4.8. The Endor spectrum of Nd[sup(3+)] in LaCl[sub(3)]; 4.9. Endor measurements of ligand hyperfine structure; 4.10. Endor line widths; 4.11. 'Indirect'observation of Endor transitions; 4.12. Summary; 5. THE LANTHANIDE (4f) GROUP; 5.1. Lanthanide compounds; 5.2. The free ions; 5.3. Crystalline field theory-C[sub(3h)] symmetry.. 5.4. Magnetic hyperfine structure5.5. Nuclear electric quadrupole interaction; 5.6. Experimental results for ethylsulphates and anhydrous chlorides; 5.7. Experimental results for the double nitrates, Ln[sub(2)]Mg[sub(3)](NO[sub(3)])[sub(12)], 24H[sub(2)]O; 5.8. Lanthanide ions in cubic symmetry; 5.9. Ions with a half-filled 4f-shell, 4f[sup(7)], [sup(8)]S[sub(7/2)]. Eu[sup(2+)], Gd[sup(3+)], Tb[sup(4+)]; 5.10. Higher-order terms in the spin Hamiltonian; 6. THE ACTINIDE (5f) GROUP; 6.1. Ions and compounds of the actinide group; 6.2. Tripositive actinide ions; 6.3. Actinide ions in CaF[sub(2)].
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    NoteZpůsob přístupu: World Wide Web
    DefektyeBooks on EBSCOhost
    Another responsib. Bleaney, B. (Brebis), 1915-2006 (author)
    Tištěná verze knihy Abragam, Anatole.  Electron paramagnetic resonance of transition ions
    Subj. Headings ionty ions * elektronová paramagnetická rezonance electron paramagnetic resonance
    Form, Genre elektronické knihy electronic books
    Conspect537.6/.8 - Magnetismus. Elektromagnetismus
    UDC 54-128 , 537.635 , (0.034.2:08)
    CountryAnglie
    Languageangličtina
    Document kindElectronic sources
    URLhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=656576
    book

    book


    This book is a reissue of a classic Oxford text, and provides a comprehensive treatment of electron paramagnetic resonance of ions of the transition groups. The emphasis is on basic principles, with numerous references to publications containing further experimental results and more detailed developments of the theory. An introductory survey gives a general understanding, and a general survey presents such topics as the classical and quantum resonance equations, thespin-Hamiltonian, Endor, spin-spin and spin-lattice interactions, together with an outline of the known behaviour of ions of each.

    Cover; CONTENTS; PART I: PRELIMINARY SURVEY; 1. INTRODUCTION TO ELECTRON PARAMAGNETIC RESONANCE; 1.1. Electronic and nuclear magnetic dipole moments; 1.2. Hyperfine structure in a free atom or ion; 1.3. Magnetic resonance; 1.4. Effective spin and anisotropy; 1.5. 'Initial splittings' or 'fine structure'; 1.6. Magnetic hyperfine structure; 1.7. Hyperfine structure including nuclear electric quadrupole interaction; 1.8. A simple example; 1.9. Transition group ions and ligand fields; 1.10. Spin-spin interaction; 1.11. Spin-lattice interaction; 1.12. Dynamic nuclear orientation; 1.13. Endor.1.14. Experimental aspectsPART II: GENERAL SURVEY; 2. THE RESONANCE PHENOMENON; 2.1. Use of rotating coordinates; 2.2. Magnetic resonance; 2.3. Quantum-mechanical analysis; 2.4. Magnetic resonance in aggregated systems; 2.5. Adiabatic rapid passage; 2.6. Relaxation effects; 2.7. Radio-frequency pulses and spin-echoes; 2.8. Solution of the macroscopic equations for slow passage; 2.9. Intensity and line width; 2.10. Spectrometer sensitivity; 3. THE SPIN HAMILTONIAN AND THE SPECTRUM; 3.1. The spin Hamiltonian; 3.2. The effect of anisotropy in the g-factor; 3.3. Multipole fine structure.3.4. Fine structure in cubic fields (S = 5/2, 7/2)3.5. Electronic 'quadrupole' fine structure (S = 1, 8/2); 3.6. Electronic 'quadrupole' fine structure in a strong magnetic field; 3.7. Hyperfine structure I-introductory remarks; 3.8. Hyperfine structure II-strong external field; 3.9. Hyperfine structure III-nuclear electric quadrupole interaction; 3.10. 'Forbidden' hyperfine transitions; 3.11. Ligand hyperfine structure; 3.12. The spectrum of a powder; 3.13. Effects of crystal imperfections; 3.14. Weak-field Zeeman interaction for non-Kramers ions; 4. ELECTRON-NUCLEAR DOUBLE RESONANCE (ENDOR).4.1. Introduction4.2. The Endor spectrum; 4.3. Enhancement of the nuclear transition probability; 4.4. Endor on donors in silicon; 4.5. Endor on donors in silicon-relaxation effects; 4.6. Relaxation effects in Endor-general; 4.7. The hyperfine structure of europium; 4.8. The Endor spectrum of Nd[sup(3+)] in LaCl[sub(3)]; 4.9. Endor measurements of ligand hyperfine structure; 4.10. Endor line widths; 4.11. 'Indirect'observation of Endor transitions; 4.12. Summary; 5. THE LANTHANIDE (4f) GROUP; 5.1. Lanthanide compounds; 5.2. The free ions; 5.3. Crystalline field theory-C[sub(3h)] symmetry.5.4. Magnetic hyperfine structure5.5. Nuclear electric quadrupole interaction; 5.6. Experimental results for ethylsulphates and anhydrous chlorides; 5.7. Experimental results for the double nitrates, Ln[sub(2)]Mg[sub(3)](NO[sub(3)])[sub(12)], 24H[sub(2)]O; 5.8. Lanthanide ions in cubic symmetry; 5.9. Ions with a half-filled 4f-shell, 4f[sup(7)], [sup(8)]S[sub(7/2)]. Eu[sup(2+)], Gd[sup(3+)], Tb[sup(4+)]; 5.10. Higher-order terms in the spin Hamiltonian; 6. THE ACTINIDE (5f) GROUP; 6.1. Ions and compounds of the actinide group; 6.2. Tripositive actinide ions; 6.3. Actinide ions in CaF[sub(2)].

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.