Number of the records: 1  

Structural geology algorithms

  1. Title statementStructural geology algorithms : vectors and tensors / Richard W. Allmendinger, Nestor Cardozo, Donald M. Fisher
    Personal name Allmendinger, Richard Waldron, 1953- (author)
    PublicationCambridge ; New York : Cambridge University Press, 2012
    Phys.des.1 online zdroj (xi, 289 stran) : ilustrace, mapy
    ISBN9781139207416 (online)
    1139207415 (online)
    9781139207379
    1139207377
    9780511920202 (online)
    0511920202 (online)
    9781139207393
    1139207393
    Internal Bibliographies/Indexes NoteObsahuje bibliografické odkazy
    ContentsPreface -- 1. Problem solving in structural geology -- 2. Coordinate systems, scalars and vectors -- 3. Transformations of coordinate axes and vectors -- 4. Matrix operations and indicial notation -- 5. Tensors -- 6. Stress -- 7. Introduction to deformation -- 8. Infinitesimal strain -- 9. Finite strain -- 10. Progressive strain histories and kinematics -- 11. Velocity description of deformation -- 12. Error analysis -- References -- Index.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    NoteZpůsob přístupu: World Wide Web
    DefektyeBooks on EBSCOhost
    Another responsib. Cardozo, Nestor (author)
    Fisher, Donald M. (author)
    Subj. Headings strukturní geologie structural geology * geomorfologické útvary geomorphological features * matematické modely mathematical models * deformace deformations (mechanics)
    Form, Genre elektronické knihy electronic books
    Conspect551 - Geologie. Meteorologie. Klimatologie
    UDC 551.243 , 539.37/.38 , 519.673 , 551.4 , (0.034.2:08)
    CountryVelká Británie ; Spojené státy americké
    Languageangličtina
    Document kindElectronic sources
    URLhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=415680
    book

    book


    "State-of-the-art analysis of geological structures has become increasingly quantitative but traditionally, graphical methods are used in teaching. This innovative lab book provides a unified methodology for problem-solving in structural geology using linear algebra and computation. Assuming only limited mathematical training, the book begins with classic orientation problems and progresses to more fundamental topics of stress, strain and error propagation. It introduces linear algebra methods as the foundation for understanding vectors and tensors, and demonstrates the application of geometry and kinematics in geoscience without requiring students to take a supplementary mathematics course. All algorithms are illustrated with a suite of online MATLAB functions, allowing users to modify the code to solve their own structural problems. Containing 20 worked examples and over 60 exercises, this is the ideal lab book for advanced undergraduates or beginning graduate students. It will also provide professional structural geologists with a valuable reference and refresher for calculations"--Provided by publisher."Structural Geology has been taught, largely unchanged, for the last 50 years or more. The lecture part of most courses introduces students to concepts such as stress and strain, as well as more descriptive material like fault and fold terminology. The lab part of the course usually focuses on practical problem solving, mostly traditional me-thods for describing quantitatively the geometry of structures. While the lecture may introduce advanced concepts such as tensors, the lab commonly trains the student to use a combination of graphical methods like orthographic or spherical projection, as well as a variety of plane trigonometry solutions to various problems. This leads to a disconnect between lecture concepts that require a very precise understanding of coor-dinate systems (e.g., tensors) and lab methods that appear to have no common spatial or mathematical foundation. Students have no chance to understand that, for example, seemingly unconnected constructions like down-plunge projections and Mohr circles share a common mathematical heritage: they are both graphical representations of coordinate transformations"--Provided by publisher.

    Preface -- 1. Problem solving in structural geology -- 2. Coordinate systems, scalars and vectors -- 3. Transformations of coordinate axes and vectors -- 4. Matrix operations and indicial notation -- 5. Tensors -- 6. Stress -- 7. Introduction to deformation -- 8. Infinitesimal strain -- 9. Finite strain -- 10. Progressive strain histories and kinematics -- 11. Velocity description of deformation -- 12. Error analysis -- References -- Index.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.