Number of the records: 1
Cluster analysis
Title statement Cluster analysis / Brian S. Everitt and others Personal name Everitt, Brian, 1944- (author) Edition statement 5th ed. Publication Chichester : Wiley, 2011 Phys.des. 1 online zdroj (xii, 330 stran) : ilustrace ISBN 9780470977804 (online ; pdf) 0470977809 9780470978443 0470978449 Edition Wiley series in probability and statistics Internal Bibliographies/Indexes Note Obsahuje bibliografické odkazy Contents An introduction to classification and clustering -- Detecting clusters graphically -- Measurement of proximity -- Hierarchical clustering -- Optimization clustering techniques -- Finite mixture densities as models for cluster analysis -- Model-based cluster analysis for structured data -- Miscellaneous clustering methods -- Some final comments and guidelines. Notes to Availability Přístup pouze pro oprávněné uživatele Note Způsob přístupu: World Wide Web Defekty eBooks on EBSCOhost Subj. Headings analýza dat data analysis * matematická analýza mathematical analysis * statistická analýza statistical analysis Form, Genre elektronické knihy electronic books Conspect 519.1/.8 - Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování UDC 519.23 , 517 , 303.7 , (0.034.2:08) Country Velká Británie Language angličtina Document kind Electronic sources URL http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=354105
"This edition provides a thorough revision of the fourth edition which focuses on the practical aspects of cluster analysis and covers new methodology in terms of longitudinal data and provides examples from bioinformatics. Real life examples are used throughout to demonstrate the application of the theory, and figures are used extensively to illustrate graphical techniques. This book includes an appendix of getting started on cluster analysis using R, as well as a comprehensive and up-to-date bibliography"--Provided by publisher.
An introduction to classification and clustering -- Detecting clusters graphically -- Measurement of proximity -- Hierarchical clustering -- Optimization clustering techniques -- Finite mixture densities as models for cluster analysis -- Model-based cluster analysis for structured data -- Miscellaneous clustering methods -- Some final comments and guidelines.
Number of the records: 1