Number of the records: 1  

Cluster analysis

  1. Title statementCluster analysis / Brian S. Everitt and others
    Personal name Everitt, Brian, 1944- (author)
    Edition statement5th ed.
    PublicationChichester : Wiley, 2011
    Phys.des.1 online zdroj (xii, 330 stran) : ilustrace
    ISBN9780470977804 (online ; pdf)
    0470977809
    9780470978443
    0470978449
    EditionWiley series in probability and statistics
    Internal Bibliographies/Indexes NoteObsahuje bibliografické odkazy
    ContentsAn introduction to classification and clustering -- Detecting clusters graphically -- Measurement of proximity -- Hierarchical clustering -- Optimization clustering techniques -- Finite mixture densities as models for cluster analysis -- Model-based cluster analysis for structured data -- Miscellaneous clustering methods -- Some final comments and guidelines.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    NoteZpůsob přístupu: World Wide Web
    DefektyeBooks on EBSCOhost
    Subj. Headings analýza dat data analysis * matematická analýza mathematical analysis * statistická analýza statistical analysis
    Form, Genre elektronické knihy electronic books
    Conspect519.1/.8 - Kombinatorika. Teorie grafů. Matematická statistika. Operační výzkum. Matematické modelování
    UDC 519.23 , 517 , 303.7 , (0.034.2:08)
    CountryVelká Británie
    Languageangličtina
    Document kindElectronic sources
    URLhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=354105
    View book information on page www.obalkyknih.cz

    book

    Cluster analysis

    "This edition provides a thorough revision of the fourth edition which focuses on the practical aspects of cluster analysis and covers new methodology in terms of longitudinal data and provides examples from bioinformatics. Real life examples are used throughout to demonstrate the application of the theory, and figures are used extensively to illustrate graphical techniques. This book includes an appendix of getting started on cluster analysis using R, as well as a comprehensive and up-to-date bibliography"--Provided by publisher.

    An introduction to classification and clustering -- Detecting clusters graphically -- Measurement of proximity -- Hierarchical clustering -- Optimization clustering techniques -- Finite mixture densities as models for cluster analysis -- Model-based cluster analysis for structured data -- Miscellaneous clustering methods -- Some final comments and guidelines.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.