Number of the records: 1  

Clinical radiation oncology

  1. Title statementClinical radiation oncology : indications, techniques, and results / editor, William Small, Jr. ; associate editors, Nancy J. Tarbell, Min Yao ; section editors, Jason A. Efstathiou, Minesh P. Mehta, William Small, Jr., Christopher G. Willett, Min Yao.
    Edition statementThird edition.
    PublicationHoboken, NJ : John Wiley & Sons, Inc., 2017.
    Phys.des.1 online resource.
    ISBN9781119341154 (online)
    1119341159 (online)
    Internal Bibliographies/Indexes NoteIncludes bibliographical references and index.
    ContentsClinical Radiation Oncology; Contents; Dedication; Preface; Contributors; Section 1 Scientific Foundations; 1 Basic Concepts of Clinical Radiation Oncology; Introduction; Planning and Preparation; Radiation Therapy in the Clinic; Combining Radiation Therapy with Surgery; Preoperative Radiation Therapy; Postoperative Radiation Therapy; Combining Radiation Therapy with Chemotherapy; Combining Radiation Therapy with Biologic Agents; Combining Radiation Therapy with Hormonal Agents; Radiosensitivity and Tumor Control Probability; Fractionation and Fraction Size
    Content noteLinear Energy Transfer (LET) and Relative Biologic Effectiveness (RBE)Oxygen Enhancement Ratio; Radiocurable Tumors; Technological Advances in Radiotherapy; Intensity-Modulated Radiation Therapy (IMRT); Image-Guided Radiotherapy (IGRT); Stereotactic Radiosurgery (SRS)/Stereotactic Body Radiation Therapy (SBRT); Particle Beam Radiotherapy; Brachytherapy; Intraoperative Radiotherapy; Unsealed Sources; Hyperthermia; Radiation Complications; References; 2 Radiation Biology for Radiation Oncologists; DNA Damage, DNA Repair, and Cell Survival; DNA Damage After Irradiation. Immediate Biochemical Modification of Radiation-Induced DamageDNA Damage Sensing and DNA Repair; Modes of Cell Death Following DNA Damage; Biological Factors that Influence Radiation Response; The Oxygen Effect and the Significance of Hypoxia; Radiation Sensitivity, the Cell Cycle, and Checkpoints; Physical Parameters Affecting Radiation Response; Dose Rate; Linear Energy Transfer and Relative Biological Effectiveness; Tumor and Tissue Responses to Ionizing Radiation; Dose-Response Curves and the Therapeutic Window; Tumor Cell Radiation Sensitivity. Dose-Response Curves for Tumors Irradiated In SituSlope of Dose-Response Curve and Heterogeneity in Treated Tumors; Tumor Volume and TCD50; Recurrent Tumors; Immune Reaction and Tumor Response; Normal Tissue Response; Attempts to Reduce the Impact of Hypoxic Cells on Tumor Resistance; Dose Fractionation and Tissue Response; Biological Significance of Dose Fractionation; Models of Fractionation Dependence; Combination of Radiation and Chemotherapeutic Agents: Cytotoxics, Sensitizers, and Protectors; Radiation Protectors; Rationale for the Combination of Surgery and Radiotherapy. New Approaches to Optimize Radiation TherapyInhibition of Kinase-Dependent Signaling Pathways to Enhance Radiotherapy; Modulation of Apoptosis to Increase Tumor Cell Kill or Protect Normal Tissues; Angiogenesis as a Target for Cancer Therapy; Summary; References; 3 Treatment Planning; Introduction; Imaging; Imaging for Treatment Planning; Computed Tomography; Magnetic Resonance Imaging; Emission Tomography; Image Processing; Image Registration; Deformable Image Registration (DIR); Image Segmentation; Dose Calculations; Single-Field Dosimetry
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    Another responsib. Small, William, Jr.,
    Tarbell, Nancy J., 1951-
    Yao, Min (Radiation oncologist),
    Subj. Headings Cancer - Radiotherapy. * HEALTH & FITNESS / Diseases / General. * MEDICAL / Clinical Medicine. * MEDICAL / Diseases. * MEDICAL / Evidence-Based Medicine. * MEDICAL / Internal Medicine. * Cancer - Radiotherapy.
    MeSH Neoplasms - radiotherapy. * Radiation Oncology - methods.
    Form, Genre elektronické knihy electronic books
    CountryNew Jersey
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    Clinical Radiation Oncology; Contents; Dedication; Preface; Contributors; Section 1 Scientific Foundations; 1 Basic Concepts of Clinical Radiation Oncology; Introduction; Planning and Preparation; Radiation Therapy in the Clinic; Combining Radiation Therapy with Surgery; Preoperative Radiation Therapy; Postoperative Radiation Therapy; Combining Radiation Therapy with Chemotherapy; Combining Radiation Therapy with Biologic Agents; Combining Radiation Therapy with Hormonal Agents; Radiosensitivity and Tumor Control Probability; Fractionation and Fraction SizeLinear Energy Transfer (LET) and Relative Biologic Effectiveness (RBE)Oxygen Enhancement Ratio; Radiocurable Tumors; Technological Advances in Radiotherapy; Intensity-Modulated Radiation Therapy (IMRT); Image-Guided Radiotherapy (IGRT); Stereotactic Radiosurgery (SRS)/Stereotactic Body Radiation Therapy (SBRT); Particle Beam Radiotherapy; Brachytherapy; Intraoperative Radiotherapy; Unsealed Sources; Hyperthermia; Radiation Complications; References; 2 Radiation Biology for Radiation Oncologists; DNA Damage, DNA Repair, and Cell Survival; DNA Damage After IrradiationImmediate Biochemical Modification of Radiation-Induced DamageDNA Damage Sensing and DNA Repair; Modes of Cell Death Following DNA Damage; Biological Factors that Influence Radiation Response; The Oxygen Effect and the Significance of Hypoxia; Radiation Sensitivity, the Cell Cycle, and Checkpoints; Physical Parameters Affecting Radiation Response; Dose Rate; Linear Energy Transfer and Relative Biological Effectiveness; Tumor and Tissue Responses to Ionizing Radiation; Dose-Response Curves and the Therapeutic Window; Tumor Cell Radiation SensitivityDose-Response Curves for Tumors Irradiated In SituSlope of Dose-Response Curve and Heterogeneity in Treated Tumors; Tumor Volume and TCD50; Recurrent Tumors; Immune Reaction and Tumor Response; Normal Tissue Response; Attempts to Reduce the Impact of Hypoxic Cells on Tumor Resistance; Dose Fractionation and Tissue Response; Biological Significance of Dose Fractionation; Models of Fractionation Dependence; Combination of Radiation and Chemotherapeutic Agents: Cytotoxics, Sensitizers, and Protectors; Radiation Protectors; Rationale for the Combination of Surgery and RadiotherapyNew Approaches to Optimize Radiation TherapyInhibition of Kinase-Dependent Signaling Pathways to Enhance Radiotherapy; Modulation of Apoptosis to Increase Tumor Cell Kill or Protect Normal Tissues; Angiogenesis as a Target for Cancer Therapy; Summary; References; 3 Treatment Planning; Introduction; Imaging; Imaging for Treatment Planning; Computed Tomography; Magnetic Resonance Imaging; Emission Tomography; Image Processing; Image Registration; Deformable Image Registration (DIR); Image Segmentation; Dose Calculations; Single-Field Dosimetry

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.