Number of the records: 1  

The physics of thermoelectric energy conversion

  1. Title statementThe physics of thermoelectric energy conversion / H. Julian Goldsmid. [elektronický zdroj]
    PublicationSan Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017]
    DistributionBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
    Phys.des.1 online resource (various pagings) : illustrations (some color).
    ISBN9781681746418 (online)
    9781681746432 mobi
    Edition[IOP release 3]
    IOP concise physics, ISSN 2053-2571
    Note"Version: 20170401"--Title page verso.
    "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
    Internal Bibliographies/Indexes NoteIncludes bibliographical references.
    ContentsPreface -- 1. The Seebeck and Peltier effects -- 1.1. Definition of the thermoelectric coefficients -- 1.2. The Kelvin relations -- 1.3. Electrical resistance and thermal conductance
    Content note2. The thermoelectric figure of merit -- 2.1. Coefficient of performance of thermoelectric heat pumps and refrigerators -- 2.2. The dimensionless figure of merit, ZT -- 2.3. The efficiency of thermoelectric generators -- 2.4. Multi-stage arrangements. 3. Measuring the thermoelectric properties -- 3.1. Adiabatic and isothermal electrical conductivity -- 3.2. Problems of measuring the thermal conductivity -- 3.3. The Seebeck coefficient -- 3.4. Direct determination of the figure of merit. 4. Electronic transport in semiconductors -- 4.1. Energy band theory -- 4.2. Mobility and effective mass -- 4.3. Dependence of the transport properties on the Fermi energy -- 4.4. Degenerate and non-degenerate conductors -- 4.5. Optimising the Seebeck coefficient -- 4.6. Bipolar conduction -- 4.7. Band engineering and nanostructure effects. 5. Heat conduction by the crystal lattice -- 5.1. Phonon conduction in pure crystals -- 5.2. Prediction of the lattice conductivity -- 5.3. Solid solutions -- 5.4. Mass-defect and strain scattering -- 5.5. Grain boundary scattering of phonons -- 5.6. Phonon drag. 6. Materials for Peltier cooling -- 6.1. Bismuth telluride and its alloys -- 6.2. Bismuth-antimony. 7. Generator materials -- 7.1. IV-VI compounds and alloys -- 7.2. Silicon and germanium -- 7.3. Phonon-glass electron-crystals -- 7.4. Other thermoelectric materials. 8. Transverse flow and thermomagnetic effects -- 8.1. Advantages of the transverse thermoelectric effects -- 8.2. Synthetic transverse materials -- 8.3. The thermomagnetic effects. 9. Thermoelectric refrigerators and generators -- 9.1. Thermoelectric modules -- 9.2. Transient operation -- 9.3. Thermoelectric generators -- 9.4. Future prospects.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    AudienceApplied higher level physicists, materials scientists and engineers involved with the solid state materials research and design in electronic materials, particularly interested in thermoelectric (cooling and heating) effects.
    NoteZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader, EPUB reader, or Kindle reader.
    Another responsib. Morgan & Claypool Publishers,
    Institute of Physics (Great Britain),
    Subj. Headings Thermoelectricity. * Direct energy conversion. * Electronic devices & materials. * TECHNOLOGY & ENGINEERING / Electronics / Semiconductors.
    Form, Genre elektronické knihy electronic books
    CountryKalifornie
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    This book outlines the principles of thermoelectric generation and refrigeration from the discovery of the Seebeck and Peltier effects in the 19th century through the introduction of semiconductor thermoelements in the mid-20th century to the more recent development of nanostructured materials. The conditions for favourable electronic properties are discussed. The methods for selecting materials with a low lattice thermal conductivity are outlined and the ways in which the scattering of phonons can be enhanced are described. The book is aimed at readers without specialised knowledge.

    Preface -- 1. The Seebeck and Peltier effects -- 1.1. Definition of the thermoelectric coefficients -- 1.2. The Kelvin relations -- 1.3. Electrical resistance and thermal conductance2. The thermoelectric figure of merit -- 2.1. Coefficient of performance of thermoelectric heat pumps and refrigerators -- 2.2. The dimensionless figure of merit, ZT -- 2.3. The efficiency of thermoelectric generators -- 2.4. Multi-stage arrangements3. Measuring the thermoelectric properties -- 3.1. Adiabatic and isothermal electrical conductivity -- 3.2. Problems of measuring the thermal conductivity -- 3.3. The Seebeck coefficient -- 3.4. Direct determination of the figure of merit4. Electronic transport in semiconductors -- 4.1. Energy band theory -- 4.2. Mobility and effective mass -- 4.3. Dependence of the transport properties on the Fermi energy -- 4.4. Degenerate and non-degenerate conductors -- 4.5. Optimising the Seebeck coefficient -- 4.6. Bipolar conduction -- 4.7. Band engineering and nanostructure effects5. Heat conduction by the crystal lattice -- 5.1. Phonon conduction in pure crystals -- 5.2. Prediction of the lattice conductivity -- 5.3. Solid solutions -- 5.4. Mass-defect and strain scattering -- 5.5. Grain boundary scattering of phonons -- 5.6. Phonon drag6. Materials for Peltier cooling -- 6.1. Bismuth telluride and its alloys -- 6.2. Bismuth-antimony7. Generator materials -- 7.1. IV-VI compounds and alloys -- 7.2. Silicon and germanium -- 7.3. Phonon-glass electron-crystals -- 7.4. Other thermoelectric materials8. Transverse flow and thermomagnetic effects -- 8.1. Advantages of the transverse thermoelectric effects -- 8.2. Synthetic transverse materials -- 8.3. The thermomagnetic effects9. Thermoelectric refrigerators and generators -- 9.1. Thermoelectric modules -- 9.2. Transient operation -- 9.3. Thermoelectric generators -- 9.4. Future prospects.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.