Number of the records: 1  

The foundations of electric circuit theory

  1. Title statementThe foundations of electric circuit theory / N.R. Sree Harsha, Anupama Prakash, D.P. Kothari. [elektronický zdroj]
    PublicationBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
    Phys.des.1 online resource (various pagings) : illustrations (chiefly color).
    ISBN9780750312660 (online)
    9780750312684 mobi
    Edition[IOP release 3]
    IOP expanding physics, ISSN 2053-2563
    Note"Version: 20161001"--Title page version.
    Internal Bibliographies/Indexes NoteIncludes bibliographical references.
    ContentsPreface -- 1. Mathematical introduction -- 1.1. Introduction to the calculus of variations -- 1.2. Vectors
    Content note2. The concept of charge -- 2.1. Electric charge -- 2.2. Electrification -- 2.3. Some properties of charges -- 2.4. Coulomb's law. 3. Electrostatics -- 3.1. Introduction and the need for the concept of fields -- 3.2. Electromagnetic fields -- 3.3. The concept of flux -- 3.4. Gauss's theorem -- 3.5. Differential form of the Gauss theorem. 4. The electric potential -- 4.1. The electric potential difference -- 4.2. Earnshaw's theorem -- 4.3. Conductors and insulators -- 4.4. Capacitors -- 4.5. The energy stored in a capacitor. 5. Electric currents -- 5.1. Special theory of relativity -- 5.2. Relativity of simultaneity -- 5.3. Time dilation -- 5.4. Rods moving perpendicularly to each other -- 5.5. Length contraction -- 5.6. Modified expression of current -- 5.7. Ohm's law -- 5.8. Application of the Poynting vector to a simple DC circuit. 6. Magnetism -- 6.1. Introduction -- 6.2. Magnetic field due to electric current -- 6.3. Biot-Savart's law -- 6.4. Amp?ere's law -- 6.5. Magnetic forces -- 6.6. Electric and magnetic fields : consequences and genesis -- 6.7. Magnetism as a relativistic effect -- 6.8. Rowland's experiment -- 6.9. The Hall effect -- 6.10. The energy associated with the magnetic fields. 7. Electromagnetic induction -- 7.1. Faraday's experiments -- 7.2. Faraday's law of electromagnetic induction -- 7.3. Lenz's law of electromagnetic induction -- 7.4. Mutual induction -- 7.5. Self-induction -- 7.6. The concept of an inductor -- 7.7. Energy stored in an inductor. 8. Maxwell's equations -- 8.1. The finite current-carrying wire -- 8.2. Discharging a capacitor problem -- 8.3. Concept of displacement current -- 8.4. Maxwell's equations -- 8.5. Helmholtz's theorem -- 8.6. The choice of gauge -- 8.7. Retarded potentials and fields -- 8.8. Properties of Maxwell's equations -- 8.9. Some interesting remarks about ‘displacement current' -- 8.10. Poynting's theorem. 9. Network theorems -- 9.1. Introduction -- 9.2. Derivation of Kirchhoff's laws -- 9.3. The Newton of electricity -- 9.4. The concept of entropy in electrical circuits -- 9.5. Maximum entropy production principle -- 9.6. Superposition theorem -- 9.7. Source transformation -- 9.8. Thevenin's theorem -- 9.9. Norton's theorem -- 9.10. Tellegen's theorem in DC circuits -- 9.11. Some interesting remarks on Kirchhoff's laws -- 10. Solutions-manual.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    AudienceAdvanced undergrad and graduate students in electrical engineering, electronics engineering, instrumentation engineering and applied physics.
    NoteZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader.
    Another responsib. Prakash, Anupama,
    Kothari, D. P. (Dwarkadas Pralhaddas), 1944-
    Another responsib. Institute of Physics (Great Britain),
    Subj. Headings Electric circuits. * Vector analysis. * Physics. * Electricity, electromagnetism and magnetism. * TECHNOLOGY & ENGINEERING / Electronics / Circuits / General.
    Form, Genre elektronické knihy electronic books
    CountryAnglie
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    Circuit theory is one of the most important tools of the electrical engineer, and it can be derived with suitable approximations from Maxwell's equations. Despite this, university courses treat electromagnetism and circuit theory as two separate subjects and at advanced level, students can lack a basic understanding of the classical electromagnetism applied in the context of electric circuits to fully appreciate and apply circuit theory and understand its limitations. Here the authors build on their graduate teaching experiences and lectures to treat these topics as a single subject and derive and present the important results from circuit analyses, such as Kirchhoff's laws and Ohm's law, using the ideas of the classical electromagnetism.

    Preface -- 1. Mathematical introduction -- 1.1. Introduction to the calculus of variations -- 1.2. Vectors2. The concept of charge -- 2.1. Electric charge -- 2.2. Electrification -- 2.3. Some properties of charges -- 2.4. Coulomb's law3. Electrostatics -- 3.1. Introduction and the need for the concept of fields -- 3.2. Electromagnetic fields -- 3.3. The concept of flux -- 3.4. Gauss's theorem -- 3.5. Differential form of the Gauss theorem4. The electric potential -- 4.1. The electric potential difference -- 4.2. Earnshaw's theorem -- 4.3. Conductors and insulators -- 4.4. Capacitors -- 4.5. The energy stored in a capacitor5. Electric currents -- 5.1. Special theory of relativity -- 5.2. Relativity of simultaneity -- 5.3. Time dilation -- 5.4. Rods moving perpendicularly to each other -- 5.5. Length contraction -- 5.6. Modified expression of current -- 5.7. Ohm's law -- 5.8. Application of the Poynting vector to a simple DC circuit6. Magnetism -- 6.1. Introduction -- 6.2. Magnetic field due to electric current -- 6.3. Biot-Savart's law -- 6.4. Amp?ere's law -- 6.5. Magnetic forces -- 6.6. Electric and magnetic fields : consequences and genesis -- 6.7. Magnetism as a relativistic effect -- 6.8. Rowland's experiment -- 6.9. The Hall effect -- 6.10. The energy associated with the magnetic fields7. Electromagnetic induction -- 7.1. Faraday's experiments -- 7.2. Faraday's law of electromagnetic induction -- 7.3. Lenz's law of electromagnetic induction -- 7.4. Mutual induction -- 7.5. Self-induction -- 7.6. The concept of an inductor -- 7.7. Energy stored in an inductor8. Maxwell's equations -- 8.1. The finite current-carrying wire -- 8.2. Discharging a capacitor problem -- 8.3. Concept of displacement current -- 8.4. Maxwell's equations -- 8.5. Helmholtz's theorem -- 8.6. The choice of gauge -- 8.7. Retarded potentials and fields -- 8.8. Properties of Maxwell's equations -- 8.9. Some interesting remarks about ‘displacement current' -- 8.10. Poynting's theorem9. Network theorems -- 9.1. Introduction -- 9.2. Derivation of Kirchhoff's laws -- 9.3. The Newton of electricity -- 9.4. The concept of entropy in electrical circuits -- 9.5. Maximum entropy production principle -- 9.6. Superposition theorem -- 9.7. Source transformation -- 9.8. Thevenin's theorem -- 9.9. Norton's theorem -- 9.10. Tellegen's theorem in DC circuits -- 9.11. Some interesting remarks on Kirchhoff's laws -- 10. Solutions-manual.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.