Number of the records: 1  

The physics and mathematics of MRI

  1. Title statementThe physics and mathematics of MRI / Richard Ansorge, Martin Graves. [elektronický zdroj]
    Varying form of titlePhysics and mathematics of magnetic resonance imaging.
    PublicationSan Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2016]
    DistributionBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2016]
    Phys.des.1 online resource (various pagings) : illustrations (chiefly color).
    ISBN9781681740683 (online)
    9781681741963 mobi
    Edition[IOP release 3]
    IOP concise physics, ISSN 2053-2571
    Note"Version: 20161001"--Title page version.
    "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
    Internal Bibliographies/Indexes NoteIncludes bibliographical references.
    ContentsPreface -- Introduction -- 1. The basics -- 1.1. A brief history of MRI -- 1.2. Proton spin -- 1.3. The Bloch equations -- 1.4. Signal generation -- 1.5. Spatial encoding using magnetic field gradients -- 1.6. Spatial image formation
    Content note2. Magnetic field generation -- 2.1. Designing the main magnet -- 2.2. Designing gradient coils -- 2.3. Practical issues. 3. Radio frequency transmission and reception -- 3.1. Basic RF pulses -- 3.2. The birdcage coil -- 3.3. The transmit-receive chain -- 3.4. Surface coils -- 3.5. Parallel imaging -- 3.6. Compressed sensing -- 3.7. RF pulses -- 3.8. Multinuclear MRI. 4. Pulse sequences and images -- 4.1. Image contrast -- 4.2. Pulse sequence overview -- 4.4. Readout trajectories -- 4.5. Magnetic resonance spectrocopy (MRS) -- 4.6. k-space sampling in MRI -- 4.7. Image reconstruction -- 4.8. Conclusion. 5. Applications -- 5.1. Introduction -- 5.2. Anatomical imaging -- 5.3. Chemical shift -- 5.4. Blood flow -- 5.5. Diffusion-weighted imaging -- 5.6. Diffusion tensor imaging -- 5.7. Chemical exchange -- 5.8. Functional MRI (fMRI) -- 5.9. Cerebral perfusion -- 5.10. Dynamic contrast enhanced (DCE)-MRI -- 5.11. Multinuclear MRI -- 5.12. Chemical shift artefact. 6. Conclusion -- Appendices -- A. Essential quantum mechanics -- B. Solutions of Laplace's equation in spherical polar coordinates -- C. The Birdcage coil -- D. Fourier transforms -- E. Multiple echoes.
    Notes to AvailabilityPřístup pouze pro oprávněné uživatele
    AudienceSuitable for undergraduates attending medical physics courses.
    NoteZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader.
    Another responsib. Graves, Martin J.,
    Another responsib. Morgan & Claypool Publishers,
    Institute of Physics (Great Britain),
    Subj. Headings Magnetic resonance imaging. * Magnetic resonance imaging - Mathematics. * Medical physics. * Biophysics. * Biomedical Engineering. * Applied Physics. * SCIENCE / Life Sciences / Biophysics. * TECHNOLOGY & ENGINEERING / Biomedical.
    MeSH Magnetic Resonance Imaging. * Mathematical Concepts. * Physical Phenomena.
    Form, Genre elektronické knihy electronic books
    CountryKalifornie
    Languageangličtina
    Document kindElectronic books
    URLPlný text pro studenty a zaměstnance UPOL
    book

    book


    Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, 'pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.

    Preface -- Introduction -- 1. The basics -- 1.1. A brief history of MRI -- 1.2. Proton spin -- 1.3. The Bloch equations -- 1.4. Signal generation -- 1.5. Spatial encoding using magnetic field gradients -- 1.6. Spatial image formation2. Magnetic field generation -- 2.1. Designing the main magnet -- 2.2. Designing gradient coils -- 2.3. Practical issues3. Radio frequency transmission and reception -- 3.1. Basic RF pulses -- 3.2. The birdcage coil -- 3.3. The transmit-receive chain -- 3.4. Surface coils -- 3.5. Parallel imaging -- 3.6. Compressed sensing -- 3.7. RF pulses -- 3.8. Multinuclear MRI4. Pulse sequences and images -- 4.1. Image contrast -- 4.2. Pulse sequence overview -- 4.4. Readout trajectories -- 4.5. Magnetic resonance spectrocopy (MRS) -- 4.6. k-space sampling in MRI -- 4.7. Image reconstruction -- 4.8. Conclusion5. Applications -- 5.1. Introduction -- 5.2. Anatomical imaging -- 5.3. Chemical shift -- 5.4. Blood flow -- 5.5. Diffusion-weighted imaging -- 5.6. Diffusion tensor imaging -- 5.7. Chemical exchange -- 5.8. Functional MRI (fMRI) -- 5.9. Cerebral perfusion -- 5.10. Dynamic contrast enhanced (DCE)-MRI -- 5.11. Multinuclear MRI -- 5.12. Chemical shift artefact6. Conclusion -- Appendices -- A. Essential quantum mechanics -- B. Solutions of Laplace's equation in spherical polar coordinates -- C. The Birdcage coil -- D. Fourier transforms -- E. Multiple echoes.

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.