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Abstract 

 

The abundance and variety of noncovalent interactions shape us and the life 

surrounding us. All the natural processes evolved due to existence of these effects. 

Understanding the basics of interactions is a key factor to manipulate them rationally. 

However, a detailed decomposition of these weak forces is not an easy task.  

Computational chemistry is a multidisciplinary branch of science, born from the 

combination of scientific data collected systematically for centuries and cutting-edge 

technology. It allows us to analyze, model and even predict the properties of chemical 

systems. The complex nature of non-covalent interactions does not depend on their 

quantity in molecular complexes. In general, case-dependent differences in a very 

small fraction of the electronic structure are key to the binding with a high specificity. 

However, the weakness of these interactions makes them extremely difficult to 

observe. Accurate descriptions of non-covalent interactions require demanding QM 

methods. On the other hand, linear-scaling SQM methods in combination with implicit 

solvent model and successful corrections for non-covalent interactions enabled us to 

evaluate properties in protein-ligand systems.  

Structure generation and validation is the most critical step for all physics-based 

CADD approaches. We used molecular dynamics to systematically generate and scan 

set of geometries for host-guest systems. The results of this approach are highly input 

geometry dependent for the systems such as protein-ligand complexes that include 

huge number of structural degrees of freedom. Extensive docking calculations can 

provide a near-native binding mode more efficiently than running long MD 

simulations with different setups. We evaluated the performance of SQM/COSMO 

scoring function capabilities on sampling and ranking studies on many different P-L 

complexes from diverse set of targets.   
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Finally, we built an efficient virtual screening pipeline which is capable of filtering 

out redundant poses and shrinks the database to an affordable size for further 

SQM/COSMO scoring calculations.  
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CHAPTER 1 

 

INTRODUCTION 

 

The acceleration of technological evolution in the beginning of 21st century has 

profoundly changed the way of how we live today. Electronic devices have become 

universally accessible. Their storage capacity and speed have been increasing 

exponentially, creating an astonishing amount of information which is shared on a 

worldwide scale. The use of supercomputers helped to broaden the horizons of 

scientists who investigate mechanisms of life from the smallest and most fundamental 

components. Simulations with suitable parameters have provided useful insights. In 

computational chemistry, we can run calculations to obtain information such as 

molecular geometries, reaction rates, interaction energies, physicochemical properties, 

and spectra [1]. These capabilities of computational chemistry have become 

indispensable in computer-aided drug design (CADD) branch of pharmaceutical 

industry where researchers design, evaluate and improve properties of drug candidates. 

CADD can go along two directions for modelling candidate molecules: ligand-based 

drug design (LBDD) and structure-based drug design (SBDD). While LBDD uses only 

the information of binding small molecules, SBDD uses the three-dimensional 

structure information for both candidate molecules and their biomolecular targets, 

mostly proteins. The main goal of SBDD is to obtain a better binder in terms of affinity 

and specificity [2]. A common drawback of most SBDD methods is an inaccurate 

description of noncovalent interactions which play a major role in recognition and 

binding. Their accurate description can be obtained with a high accuracy by using 

advanced quantum mechanical (QM) methods. But their scalability with system size 
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sets the limit to tens of atoms. Protein-ligand complexes, however, are composed of 

thousands of atoms. One solution to this conundrum is to use linear-scaling 

semiempirical QM (SQM) methods which are applicable to systems of up to 10,000 

atoms. Nevertheless, their accuracy had to be increased by combining them with 

empirical corrections for noncovalent interactions. Such a tool enabled us to 

successfully evaluate binding energies of huge molecules with high accuracy [3].   

 

1.1 Quantum Chemistry 

 
Quantum mechanics (QM) theory has revolutionized theoretical description of 

molecules and gave rise to the field of quantum chemistry. QM methods are either 

based on describing the electron distribution using wave-functions and solving the 

Schrödinger equation (ab initio methods, such as Hartree-Fock (HF), Coupled cluster 

(CC), Møller–Plesset (MP)) or by describing the electron density using Density 

Functional Theory (DFT methods) [4]. Semiempirical QM (SQM) methods use some 

experimental values (parameters) to replace calculation of complicated integrals which 

would otherwise have to be evaluated [5]. The most frequently used SQM methods 

such as AM1 [6], PM6 [7] and PM7 [8] are approximations of the HF theory. Density-

functional tight-binding (DF-TB) [9] is an SQM method, which is based on DFT, and 

became popular in recent years [10].   

Larger systems (more than hundreds of atoms) can be calculated with DFT 

methods and huge ones (thousands of atoms) with SQM. These vacuum calculations 

are frequently supplemented with methods for an implicit treatment of solvent, such 

as PCM [11], COSMO [12], or SMD [13], [14]. This is much more efficient than 

having to treat solvent explicitly.  

Another way to increase efficiency of calculations in large systems is using hybrid          

quantum mechanical/molecular mechanical (QM/MM) methods. The main idea of this 

approach is based on the evaluation of quantum effects which are localized in a smaller 
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part of system as in active sites of protein-ligand complexes. The rest of the system act 

as an embedding surrounding and described by molecular mechanics (MM) methods 

[15].  

MM methods describe molecules using classical mechanics. Atoms are treated as 

spheres of a mass and a charge and are attached together via springs (bonds). The 

missing description of electrons is included via a set of parameters – so called force 

field. Several successful protein force fields have been developed over decades. These 

are AMBER (Assisted Model Building and Energy Refinement) [16], CHARMM 

(Chemistry at HARvard Macromolecular Mechanics) [17], GROMOS (Groningen 

Molecular Simulation System) [18] and OPLS (Optimized Potentials for Liquid 

Simulations) [19]. MM methods are suitable for investigations of motions and 

structural evaluation of huge systems, such as biomolecules, surrounded by thousands 

of explicit water molecules (TIP3P [20] or SCP/E [21]) over time in molecular 

dynamics (MD) calculations [1]. MM implicit solvation methods can also be used (GB 

[22], PB [23]). 

 

1.2 Noncovalent Interactions 
 

Noncovalent interactions govern the majority of biological processes on Earth. The 

most important ones are ionic bonds (chargecharge), hydrogen bonds and London 

dispersion interactions (Table 1.1).   

Ionic bonds are caused by the attraction between atoms of opposite charge. These 

interactions act over long ranges (typically nanometers). The major contribution to the 

binding comes from the electrostatic interactions. An ion pair between two amino acid 

side chains of a protein is called a salt bridge. They can occur between the carboxylate 

groups (e.g. from the side chains of Asp of Glu) and the amino (Lys or N-terminus) or 

guanidinium (Arg) moieties [24].  
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Hydrogen bond (HB) is schematically described as X-HY where the dots denote 

the noncovalent bonding. X-H represent the HB donor in which X is more 

electronegative than H and Y represents the acceptor which can be an atom, an anion, 

a molecule or a fragment of a molecule. Y serves as an electron-rich region such as a 

lone electron pair or π electron density [25]. The strength of HB can vary from 1 

kcal/mol in vacuum (e.g. C-Hπ, around 1-1.5 kcal/mol) [26] to few kcal/mol (e.g. 

N-HO, O-HO, 5-7 kcal/mol) [27]. The strongest HB can be seen in F-HF- 

interactions (39 kcal/mol) due to extreme electronegativity of F atoms [28].   

London dispersion interactions (previously called van der Waals; vDW) act on 

atoms or molecules due to induced dipole-induced dipole dispersion forces. These 

interactions are effective in very short range (tenths of nanometers) [29].  

Some other examples for special type of noncovalent bonds are dihydrogen bonds, 

π…π interactions, halogen bonds, dative bonds [23]. Most of the noncovalent 

interactions are well described at MM level. But special cases which represent some 

property originating from purely quantum nature, require ad hoc corrections (e.g. 

halogen bonds [30]) or use of QM methods.  

 

 

 

 

 

 

 

 

 



 
 

      CHAPTER 1: Introduction  - 5 - 
 
 

Table 1.1 Schematical representation of noncovalent interactions and their dependencies by 

distance. The table is taken from R. R. Knowles and E. N. Jacobsen, PNAS, 2010, 

Vol. 107, no. 48, 20678-20685 

  

 

Even though individually any of these interactions (Table 1.1) are much weaker 

than a single covalent bond, combination of many noncovalent interactions provides 

the stability of complexes. Moreover, dissociation is possible easier than breaking a 

covalent bond, a trait important for molecular biology [31].  

Reliable description of all types of noncovalent interactions is a prerequisite for a 

trustworthy characterization of the binding in molecular complexes. A bottom-up 

approach starting from small molecule  databases [32], [33], parametrizing SQM 
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methods and then increase the size of the systems is a strategy to accomplish this hard 

task [34], [35], [36].  

 

1.3 Solvation and Hydrophobic effect 
 

Since most of chemical reactions occur in solution, consideration of solvent 

effects is essential. Solvent molecules interact both, with the solutes and with other 

solvent molecules via the noncovalent interactions discussed earlier (H-bonding in 

case of water) [24]. Water is the most abundant solvent in living systems. A 

biochemical reaction such as a formation of a protein-ligand complex (P-L) occurs in 

water environment. Both partners need to be partially desolvated to make the binding 

interface. In some case, the binding is partly mediated by water networks [37].  

Water solvent entropy is behind another driving force of binding – the 

hydrophobic effect. This is connected with ordering of water molecules around 

nonpolar solutes, lowering unfavorably their entropy. Thus, the nonpolar groups/ 

molecules are forced to come close, increasing entropy favorably. The contributions 

of hydrophobic effect to protein folding, membrane formation and receptor-ligand 

binding are essential [24]. 

 

1.4 Molecular Complexes 
 

Molecular complexes are structures held together by noncovalent interactions. In 

some cases, interaction may occur via multiple binding sites with different 

characteristics thus increasing structural organization [38]. By using this structural 

information, we can design host molecules specific for their guests or new drug 

molecules specific for their biomolecular targets.  
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1.4.1 Host-Guest Complexes 
 

In supramolecular chemistry, hosts are larger organic molecules (such as 

cyclodextrins) that can specifically bind a smaller molecule or ion, called a guest. 

These associations are called host-guest complexes. Their binding occurs via non-

covalent interactions [38] (see Figure 1.1.).  

 

Figure 1.1 Host-guest complex structures of an α-cyclodextrinK+ and a β-cyclodextrin 

[B21H18]- 

  

The specificity and affinity of host-guest interactions can be tuned. Due to their 

adjustable properties, host-guest chemistry has been extensively studied in fields of 

molecular recognition, biosensors, analytical separation and purification, catalysis and 

drug development [39]. Host molecules can be used not only to recognize and bind to 

specific guest molecules but also to keep them encapsulated for specific purposes. For 

this reason, bioavailability of drug molecules can be improved by using host molecules 

such as cucurbiturils [40] and cyclodextrins [41]. Experimental studies in vacuum are 

good model systems for calculations of interactions, where only deformation energy 

of the host may be difficult. In solution, the affinities can be tuned by the number of 

water molecules which will be expelled upon guest binding.  

 



 
 

      CHAPTER 1: Introduction  - 8 - 
 
 

1.4.2 Protein-Ligand Complexes 

   
Proteins are one of the most abundant polymers found in all living cells. They are 

composed of 20 types of amino acids, which differ in charge, polarity, size as well as 

linearity, cyclicity or aromaticity of their side chains. These distinct chemical 

properties can lead a huge variety of different protein structures. Proteins play roles, 

e.g. in signal transmission, recognition or catalysis.  

Proteins are highly specialized molecules with a specific three-dimensional 

structure to perform a unique function. They also give specific responses to 

environmental changes by the help of small variations in the noncovalent interaction 

pattern. These interactions play an essential role for proteins to gain and preserve their 

functional forms, recognition and binding to their ligands and often allow 

conformational changes upon binding (Figure 1.2). Binding of a ligand to a binding 

site of a protein should also satisfy the complementarities in ligand size, shape, charge 

distribution and hydrophilic or hydrophobic characters [37]. 
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Figure 1.2 Binding of a ligand (green sticks) in the active site of HSP90 protein (red cartoon and 

sticks; PDB code: 1UYG). 

 

1.4.3 Recognition and Binding 
 

The strength of molecular association between a protein (P) and ligand (L) is 

quantified using binding affinity.  It is an equilibrium between the unbound states of 

protein and ligand and bound state of protein-ligand (P-L) complex (Figure 1.3) 

characterized by an equilibrium association constant Ka. The relation between the 

Gibbs free energy of binding (∆G) and the equilibrium constant (Ka) is, 

 

 

∆𝐺 =  −𝑅𝑇 ln 𝐾𝑎 (1) 

where R is the gas constant (8.315 J/K/mol) and T is the absolute temperature. 
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Figure 1.3 Free energy difference of binding. (Adopted from Textbook of Drug Design and 

Discovery Fifth edition (2016), p.17) 

 

A shift of equilibrium through the formation of bound complex as illustrated in 

the Figure 1.3 results in a higher affinity. In this case, K value becomes more positive 

and ΔG more negative. In medicinal chemistry the affinity is given either by inhibition 

constant (Ki) or the half maximal inhibitory concentration (IC50). Since Ka = 1/Ki the 

equation 1 can be written as 

 ∆G =  𝑅𝑇 ln Ki (2) 

   

ΔG has enthalpic (ΔH) and entropic (ΔS) components: 

 

 ∆G =  ΔH − TΔS (3) 

 

In some cases, IC50 can be used instead of Ki values, in which case the IC50 values 

are converted to the inhibition constant Ki by the Cheng-Prusoff equation:  

 
Ki =

IC50

(1 +
[L]
KD

)
 

(4) 
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where [L] is the concentration of the ligand used in the assay, KD is the affinity of 

the ligand for the receptor. 

IC50 value is related to activity and Ki is related to binding. While Ki is 

independent of ligand and its concentration, IC50 values are concentration dependent. 

This property of Ki makes comparisons of different assays possible [42].  

 

1.5 Computer-Aided Drug Design 
 

With the rapid development of computational facilities and efficiency, CADD has 

become an important tool in drug discovery process [43]. Besides that, the exponential 

growth of protein crystal structures deposited to the Protein Data Bank (PDB) has 

expanded the potential of SBDD. The number of crystal structures has reached 

~180,000 today (Figure 1.4.). The major tools of SBDD are docking and scoring. 

 

Figure 1.4 Overall growth of released structures per year (rcsb.org, Access date: May 13, 2021) 
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1.5.1 Ligand Docking 
 

Molecular docking aims at identifying the native structures of P-L complexes 

using computations. A large number of docking programs and web services have been 

developed [44], such as AutoDock [45], DOCK [46], GOLD [47], Glide [48], 

AutoDock Vina [49], SMINA [50], PLANTS [51] etc.  

Docking protocols produces P-L complex structures. A docking software consists 

of a search algorithm for generation of P-L complexes and a scoring function. A 

successful protocol will provide more realistic poses of ligands in an active cavity of 

a protein.   

Search algorithms can explore the binding in three different ways. The simplest is 

called rigid docking where the ligands are limited with translational and rotational 

degrees of freedom. Flexible docking explores different positions by adding a 

conformational freedom to the ligands. The third way is to extend the conformational 

search space by considering the protein flexibility which is called induced fit docking 

[52].  

 

1.5.2 Scoring Functions 
 

Scoring functions are used for estimation of noncovalent interactions in a given 

P-L complex structure by using mathematical approximations. It is the most important 

component of a molecular docking for the binding pose prediction process [53]. Thus 

they are mainly responsible for the success or failure of a docking software [54]. 

Scoring functions can be divided into empirical, knowledge-based and physics-

based.  

Empirical scoring functions estimate the binding free energy by using a set of 

parameters which were generated from protein-ligand complexes with known 

affinities. These parameters are used to describe the interaction as components made 
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of hydrogen bonding, ionic bonding, non-polar interactions, desolvation and entropic 

terms which are multiplied by weight constants [53]. Glide Score [55] and DOCK6 

[56] are examples for empirical scoring functions. 

Knowledge-based scoring functions calculate the affinity by using energy 

potentials defined for atom or chemical group pairs. Score is given as a sum of each 

individual interactions [57].    

  Physics-based scoring functions mostly use MM methods for non-covalent 

interactions (sum of electrostatic and dispersion interactions) combined with implicit 

solvation free energy term. Change of internal energy of the ligand (deformation 

energy) is added to produce the final score [52]. Docking software programs such as 

DOCK [46], GOLD [58], and AutoDock [59] have some differences in the treatment 

of hydrogen bonds. The common drawback of MM-based methods is their inherent 

lack of description of QM effects, such as charge transfer, polarization or σ-hole. QM 

calculations provide accurate description of these effects but are computationally 

demanding [60]. SQM-based scoring functions which were introduced by Kenneth 

Merz group [61] were more cost-effective than QM but had some accuracy issues. 

SQM-based scoring function showed superior performance over MM in the case of 

metalloprotein [61], [62]. However corrections were needed for inaccurate 

descriptions of hydrogen bonding and dispersion interactions [63], [64]. We developed 

these in our laboratory and resulting PM6-D3H4X method is fast and provides accurate 

description of all types of non-covalent interactions without need for any specific 

parametrization. The PM6-COSMO SF was successfully used for hundreds of P-L 

complexes [65], [66]. 

 

1.5.3 Structure-Based Virtual Screening 
 

Drug discovery process was based on random searching and empirical observations 

until 1980s. This process was improved by high-throughput screening (HTS) which 
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allows for automated screening of thousands of compounds against a target (a protein 

or a cellular assay) in a very short time [52]. Same strategy also started to be applied 

as virtual screening (VS) after the successful applications CADD studies. VS became 

a necessary tool for assisting the drug development processes. Structure-based virtual 

screening (SBVS) is a technique which predicts the affinity of the ligand molecules 

against a target with a known 3D structure by forming complex structure [67]. 

Although a combination of molecular docking followed by reliable scoring approach 

sounds as a good idea, a universal solution for the challenges regarding generating 

correct binding positions or accurate scoring has not yet achieved.  
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CHAPTER 2 

 

PROJECTS 
 

2.1 Host-Guest Complexes 
 

Understanding host-guest interactions is an important step towards building our 

knowledge of noncovalent interactions. Besides their practical use mentioned in 

Chapter 1.4.1, host-guest complexes serve as great templates for computational 

chemistry by having challenging chemical properties comparing to their dimensions. 

Host molecules can vary by size which can affect their response on binding to guest 

molecules in steric, conformational and electronic manners. We have shown the gas 

phase interactions of closo,closo-[B21H18]
−  (B21) with  macrocyclic α-, β- and γ-

cyclodextrin (CD) host molecules with the existence of two K+ counterions.  (See, 

Publication A). 

  

Figure 2.1 The most stable complexes of [β-CD + B21 + 2K]+ (left) and [γ -CD + B21 + 2K]+. 

Reprinted from Publication A. 
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After the initial energy scans, it is shown that β- and γ-CD hosts can 

accommodate B21 guest (Figure 2.1). 

Interaction energies were computed according to the eqn (5) 

∆𝐸 = 𝐸(𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑥) − 𝐸(ℎ𝑜𝑠𝑡+𝐾+) − 𝐸(𝐵21+𝐾+)   (5) 

Even the γ-CD showed more deformation upon complex formation, overall 

interactions for both [β-CD + B21 + 2K]+ and [γ -CD + B21 + 2K]+ were almost 

identical (-51.8 and -51.1 kcal/mol, respectively).  

 

2.2 Protein-Ligand Complexes 
 

Physics-based approaches in SBDD field require well refined three-dimensional 

structures of protein-ligand complexes. The performance of methods is evaluated 

under two criteria as sampling power and ranking power. Sampling power measures 

the ability of picking correct binding mode within a set of conformations of a ligand 

in the active cavity. Ranking power term indicates the success rate of ordering 

predicted affinities of different compounds versus their experimental affinities. If the 

applicability of the method is suitable for processing large databases, screening power 

becomes an important parameter for evaluation of enrichment in VS studies. 

 

2.2.1 Sampling Power 
 

Docking/scoring is one of the most frequently used tool in SBDD. While docking 

algorithms search for poses, SFs rank them by their predicted affinities. Ideally, a 

successful docking/scoring method provide the native binding pose as best binder. 

Most of the functions fail for finding or accurately scoring the native binding poses 

because of heavy approximations or missing parameters. Therefore, we developed and 
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tested an SQM based scoring function which can calculate noncovalent interactions 

with a high accuracy.  

Since QM based methods requires high quality structures for interaction energy 

calculations, we applied strict criteria for the selection of crystal structures (See the 

Method, Publication B).  

Based on the selections, we ended up with 17 diverse set of protein structures. 

The SQM/COSMO SFs performed better than all other classic SFs with a significantly 

lower hard false positive (HFP) rates per target (see Publication B, Figure 1B) and in 

total (Figure 2.2).  

 

Figure 2.2 Number of total HFPs for six scoring functions. (Reprinted from Publication B, 

Figure 1A) 

 

2.2.2 Ranking Power 
 

Success of the ranking power of a SF can be measured by correlation of 

experimental binding affinities to computationally predicted affinities. Basically, 

application of the methods is the same as in sampling studies. But in the ranking case 
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(Publication C), an SF should additionally be able to distinguish the stronger binders 

from the weaker ones. For this task, we used a database of 10 carbonic anhydrase II 

(CAII) inhibitors. Having a Zn2+ in the active site of the protein was the main challenge 

for all the SFs. SQM/COSMO outperformed all other SFs and showed better 

correlation (R2) and predictive index (PI) (detailed in the Publication C) performances 

(0.77 and 0.92, respectively).  

 

2.2.3 Screening Power 
 

Similar to the ranking step, the main aim of the VS studies is to prioritize the 

active molecules from the inactive ones. But in this case, instead of having few 

inhibitors, we must deal with huge libraries consisting of at least few thousands of 

compounds. Processing huge libraries require fully automated consistent and specific 

preparation protocols for each scoring function. Furthermore, resource and time 

management or each SF becomes a necessary step. 

In our virtual screening study (Publication D), we selected a database 

consisting of 4541 inhibitors and decoys prepared for HSP90 protein from DUD-E (a 

Database of Useful Decoys-Enhanced). We applied virtual screening by using 9 

different standardly used scoring functions along with our MM (based on 

AMBER/GB), SQM1 (SQM/COSMO scoring applied on AMBER forcefield 

optimized geometries) and SQM2 (SQM/COSMO scoring applied on geometries 

generated by restrained optimization protocol) scoring functions. Application of 

virtual screening protocols and result evaluation steps are detailed in the publication.  

MM, SQM1 and SQM2 scoring functions are pure physics-based scoring 

functions. They treat the scoring using the same interaction energy calculation formula 

without any weight on any of the terms. Interestingly for MM, all our SFs 

outperformed other conventional scoring functions in early and overall enrichment 
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comparisons. This shows us that the interaction energy calculation successfully 

included major contributions more accurately. 

Another interesting case is seen when we switch from MM to SQM1. Even 

though we got a higher early enrichment for SQM1 scoring, MM performed better in 

overall enrichment. Simply, this was due to incompatibility of geometry generation 

and energy evaluation methods. We fixed the issue by forcing the AMBER 

optimization protocols to use restraints generated from SQM/COSMO optimized 

isolated ligand. This solution brings us the almost best possible overall enrichment. It 

also emphasizes a very tiny but extremely important detail: accurate definition of the 

geometry is the first and most important key. 
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CHAPTER 3 

 

CONCLUSION 
 

In quest for a universal method for accurate descriptions of non-covalent 

interactions in host-guest or protein-ligand complexes we need to evaluate every 

possible scenario which may affect the results. In this aspect, computational chemistry 

is not only a branch to give us answers, but also produces some questions to be 

answered experimentally. Multidisciplinary collaborations of different fields with 

computational chemistry leads us to find more efficient ways to understand structure-

activity relationship further.  

In this thesis, we first dealt with host-guest molecule interactions (Publication A). 

Understanding of these interactions are important for determining physicochemical 

behavior of the boron-cage structure in an organic cavity and the respond of the guest 

molecule. Also, one of the most important subjects in this study was the introduction 

of K+ ions to the calculations. While they were contributing to the structural stability, 

they were also greatly increasing the computational demand because of increased 

degrees of freedom. 

In the following project (Publication B), we evaluated the sampling power 

performance of two SQM based SFs versus other SFs on a diverse set of protein-ligand 

complexes. This study also shown us the generality of the SQM based SFs.  

Next, (Publication C) we presented the ranking power of SQM/COSMO scoring 

function on a challenging set of 10 inhibitors binding through Zn2+ of carbonic 
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anhydrase II protein. While we were getting fairly good results from SQM/COSMO 

scoring function, there were no correlation from other standard scoring functions.  

Encouraging results enabled us to evaluate the screening power of SQM/COSMO 

scoring function on a large database made of active and decoy compounds (Publication 

D). Indications from the initial tests showed that an application of SQM/COSMO 

scoring function would only be possible by systematically eliminating the redundant 

structures obtained from extensive docking calculations. By this way, we achieved an 

enrichment value close to perfect case by calculating only 1.5% of the generated 

screening database, at SQM/COSMO level. 

As a conclusion, SQM/COSMO provides the best compromise between the 

computational cost and accuracy of describing all types of non-covalent interactions.    
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