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Abstract

The abundance and variety of noncovalent interactions shape us and the life
surrounding us. All the natural processes evolved due to existence of these effects.
Understanding the basics of interactions is a key factor to manipulate them rationally.
However, a detailed decomposition of these weak forces is not an easy task.

Computational chemistry is a multidisciplinary branch of science, born from the
combination of scientific data collected systematically for centuries and cutting-edge
technology. It allows us to analyze, model and even predict the properties of chemical
systems. The complex nature of non-covalent interactions does not depend on their
quantity in molecular complexes. In general, case-dependent differences in a very
small fraction of the electronic structure are key to the binding with a high specificity.
However, the weakness of these interactions makes them extremely difficult to
observe. Accurate descriptions of non-covalent interactions require demanding QM
methods. On the other hand, linear-scaling SQM methods in combination with implicit
solvent model and successful corrections for non-covalent interactions enabled us to

evaluate properties in protein-ligand systems.

Structure generation and validation is the most critical step for all physics-based
CADD approaches. We used molecular dynamics to systematically generate and scan
set of geometries for host-guest systems. The results of this approach are highly input
geometry dependent for the systems such as protein-ligand complexes that include
huge number of structural degrees of freedom. Extensive docking calculations can
provide a near-native binding mode more efficiently than running long MD
simulations with different setups. We evaluated the performance of SQM/COSMO
scoring function capabilities on sampling and ranking studies on many different P-L

complexes from diverse set of targets.
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Finally, we built an efficient virtual screening pipeline which is capable of filtering
out redundant poses and shrinks the database to an affordable size for further
SQM/COSMO scoring calculations.
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CHAPTER 1

INTRODUCTION

The acceleration of technological evolution in the beginning of 21% century has
profoundly changed the way of how we live today. Electronic devices have become
universally accessible. Their storage capacity and speed have been increasing
exponentially, creating an astonishing amount of information which is shared on a
worldwide scale. The use of supercomputers helped to broaden the horizons of
scientists who investigate mechanisms of life from the smallest and most fundamental
components. Simulations with suitable parameters have provided useful insights. In
computational chemistry, we can run calculations to obtain information such as
molecular geometries, reaction rates, interaction energies, physicochemical properties,
and spectra [1]. These capabilities of computational chemistry have become
indispensable in computer-aided drug design (CADD) branch of pharmaceutical
industry where researchers design, evaluate and improve properties of drug candidates.
CADD can go along two directions for modelling candidate molecules: ligand-based
drug design (LBDD) and structure-based drug design (SBDD). While LBDD uses only
the information of binding small molecules, SBDD uses the three-dimensional
structure information for both candidate molecules and their biomolecular targets,
mostly proteins. The main goal of SBDD is to obtain a better binder in terms of affinity
and specificity [2]. A common drawback of most SBDD methods is an inaccurate
description of noncovalent interactions which play a major role in recognition and
binding. Their accurate description can be obtained with a high accuracy by using

advanced guantum mechanical (QM) methods. But their scalability with system size
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sets the limit to tens of atoms. Protein-ligand complexes, however, are composed of
thousands of atoms. One solution to this conundrum is to use linear-scaling
semiempirical QM (SQM) methods which are applicable to systems of up to 10,000
atoms. Nevertheless, their accuracy had to be increased by combining them with
empirical corrections for noncovalent interactions. Such a tool enabled us to

successfully evaluate binding energies of huge molecules with high accuracy [3].

1.1 Quantum Chemistry

Quantum mechanics (QM) theory has revolutionized theoretical description of
molecules and gave rise to the field of quantum chemistry. QM methods are either
based on describing the electron distribution using wave-functions and solving the
Schradinger equation (ab initio methods, such as Hartree-Fock (HF), Coupled cluster
(CC), Mgller—Plesset (MP)) or by describing the electron density using Density
Functional Theory (DFT methods) [4]. Semiempirical QM (SQM) methods use some
experimental values (parameters) to replace calculation of complicated integrals which
would otherwise have to be evaluated [5]. The most frequently used SQM methods
such as AM1 [6], PM6 [7] and PM7 [8] are approximations of the HF theory. Density-
functional tight-binding (DF-TB) [9] is an SQM method, which is based on DFT, and

became popular in recent years [10].

Larger systems (more than hundreds of atoms) can be calculated with DFT
methods and huge ones (thousands of atoms) with SQM. These vacuum calculations
are frequently supplemented with methods for an implicit treatment of solvent, such
as PCM [11], COSMO [12], or SMD [13], [14]. This is much more efficient than
having to treat solvent explicitly.

Another way to increase efficiency of calculations in large systems is using hybrid
quantum mechanical/molecular mechanical (QM/MM) methods. The main idea of this
approach is based on the evaluation of quantum effects which are localized in a smaller
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part of system as in active sites of protein-ligand complexes. The rest of the system act
as an embedding surrounding and described by molecular mechanics (MM) methods
[15].

MM methods describe molecules using classical mechanics. Atoms are treated as
spheres of a mass and a charge and are attached together via springs (bonds). The
missing description of electrons is included via a set of parameters — so called force
field. Several successful protein force fields have been developed over decades. These
are AMBER (Assisted Model Building and Energy Refinement) [16], CHARMM
(Chemistry at HARvard Macromolecular Mechanics) [17], GROMOS (Groningen
Molecular Simulation System) [18] and OPLS (Optimized Potentials for Liquid
Simulations) [19]. MM methods are suitable for investigations of motions and
structural evaluation of huge systems, such as biomolecules, surrounded by thousands
of explicit water molecules (TIP3P [20] or SCP/E [21]) over time in molecular
dynamics (MD) calculations [1]. MM implicit solvation methods can also be used (GB
[22], PB [23]).

1.2 Noncovalent Interactions

Noncovalent interactions govern the majority of biological processes on Earth. The
most important ones are ionic bonds (charge-:-charge), hydrogen bonds and London

dispersion interactions (Table 1.1).

lonic bonds are caused by the attraction between atoms of opposite charge. These
interactions act over long ranges (typically nanometers). The major contribution to the
binding comes from the electrostatic interactions. An ion pair between two amino acid
side chains of a protein is called a salt bridge. They can occur between the carboxylate
groups (e.g. from the side chains of Asp of Glu) and the amino (Lys or N-terminus) or

guanidinium (Arg) moieties [24].
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Hydrogen bond (HB) is schematically described as X-H-:-Y where the dots denote
the noncovalent bonding. X-H represent the HB donor in which X is more
electronegative than H and Y represents the acceptor which can be an atom, an anion,
a molecule or a fragment of a molecule. Y serves as an electron-rich region such as a
lone electron pair or 7 electron density [25]. The strength of HB can vary from 1
kcal/mol in vacuum (e.g. C-H---x, around 1-1.5 kcal/mol) [26] to few kcal/mol (e.g.
N-H---O, O-H---O, 5-7 kcal/mol) [27]. The strongest HB can be seen in F-H:--F-

interactions (39 kcal/mol) due to extreme electronegativity of F atoms [28].

London dispersion interactions (previously called van der Waals; vDW) act on
atoms or molecules due to induced dipole-induced dipole dispersion forces. These

interactions are effective in very short range (tenths of nanometers) [29].

Some other examples for special type of noncovalent bonds are dihydrogen bonds,
7...m interactions, halogen bonds, dative bonds [23]. Most of the noncovalent
interactions are well described at MM level. But special cases which represent some
property originating from purely quantum nature, require ad hoc corrections (e.g.
halogen bonds [30]) or use of QM methods.
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Table 1.1 Schematical representation of noncovalent interactions and their dependencies by

distance. The table is taken from R. R. Knowles and E. N. Jacobsen, PNAS, 2010,
Vol. 107, no. 48, 20678-20685

Noncovalent interaction Energy dependence on distance

Ch —ch - 1/
arge—charge $-nH* ch_g# r
Charge—dipole s adt 1r?
$-NH," o=t
Hﬁ*
Dipole—dipole 5 & 1
5 H - H
O/t O/t
Hb" Hb"
Charge-induced dipole 1l
$-co, ‘52-
Dipole-induced dipole o IHE 1’
ENcS
Hg*
Dispersion WN 1r®
H-bond N Complicated ~1/r?
/N—H---0:<

Steric repulsion 12

E—CH3HH3C -3

Even though individually any of these interactions (Table 1.1) are much weaker
than a single covalent bond, combination of many noncovalent interactions provides
the stability of complexes. Moreover, dissociation is possible easier than breaking a

covalent bond, a trait important for molecular biology [31].

Reliable description of all types of noncovalent interactions is a prerequisite for a
trustworthy characterization of the binding in molecular complexes. A bottom-up

approach starting from small molecule databases [32], [33], parametrizing SQM
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methods and then increase the size of the systems is a strategy to accomplish this hard
task [34], [35], [36].

1.3 Solvation and Hydrophobic effect

Since most of chemical reactions occur in solution, consideration of solvent
effects is essential. Solvent molecules interact both, with the solutes and with other
solvent molecules via the noncovalent interactions discussed earlier (H-bonding in
case of water) [24]. Water is the most abundant solvent in living systems. A
biochemical reaction such as a formation of a protein-ligand complex (P-L) occurs in
water environment. Both partners need to be partially desolvated to make the binding
interface. In some case, the binding is partly mediated by water networks [37].

Water solvent entropy is behind another driving force of binding — the
hydrophobic effect. This is connected with ordering of water molecules around
nonpolar solutes, lowering unfavorably their entropy. Thus, the nonpolar groups/
molecules are forced to come close, increasing entropy favorably. The contributions
of hydrophobic effect to protein folding, membrane formation and receptor-ligand

binding are essential [24].

1.4 Molecular Complexes

Molecular complexes are structures held together by noncovalent interactions. In
some cases, interaction may occur via multiple binding sites with different
characteristics thus increasing structural organization [38]. By using this structural
information, we can design host molecules specific for their guests or new drug

molecules specific for their biomolecular targets.
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1.4.1 Host-Guest Complexes

In supramolecular chemistry, hosts are larger organic molecules (such as
cyclodextrins) that can specifically bind a smaller molecule or ion, called a guest.
These associations are called host-guest complexes. Their binding occurs via non-

covalent interactions [38] (see Figure 1.1.).

Figure 1.1 Host-guest complex structures of an a-cyclodextrin-+K* and a B-cyclodextrin:--
[B2:Has]

The specificity and affinity of host-guest interactions can be tuned. Due to their
adjustable properties, host-guest chemistry has been extensively studied in fields of
molecular recognition, biosensors, analytical separation and purification, catalysis and
drug development [39]. Host molecules can be used not only to recognize and bind to
specific guest molecules but also to keep them encapsulated for specific purposes. For
this reason, bioavailability of drug molecules can be improved by using host molecules
such as cucurbiturils [40] and cyclodextrins [41]. Experimental studies in vacuum are
good model systems for calculations of interactions, where only deformation energy
of the host may be difficult. In solution, the affinities can be tuned by the number of

water molecules which will be expelled upon guest binding.
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1.4.2 Protein-Ligand Complexes

Proteins are one of the most abundant polymers found in all living cells. They are
composed of 20 types of amino acids, which differ in charge, polarity, size as well as
linearity, cyclicity or aromaticity of their side chains. These distinct chemical
properties can lead a huge variety of different protein structures. Proteins play roles,

e.g. in signal transmission, recognition or catalysis.

Proteins are highly specialized molecules with a specific three-dimensional
structure to perform a unique function. They also give specific responses to
environmental changes by the help of small variations in the noncovalent interaction
pattern. These interactions play an essential role for proteins to gain and preserve their
functional forms, recognition and binding to their ligands and often allow
conformational changes upon binding (Figure 1.2). Binding of a ligand to a binding
site of a protein should also satisfy the complementarities in ligand size, shape, charge

distribution and hydrophilic or hydrophobic characters [37].
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Figure 1.2 Binding of a ligand (green sticks) in the active site of HSP90 protein (red cartoon and
sticks; PDB code: 1UYG).

1.4.3 Recognition and Binding

The strength of molecular association between a protein (P) and ligand (L) is
quantified using binding affinity. It is an equilibrium between the unbound states of
protein and ligand and bound state of protein-ligand (P-L) complex (Figure 1.3)
characterized by an equilibrium association constant Ka. The relation between the

Gibbs free energy of binding (AG) and the equilibrium constant (Ka) is,

AG = —RTInK, (1)

where R is the gas constant (8.315 J/K/mol) and T is the absolute temperature.
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Figure 1.3 Free energy difference of binding. (Adopted from Textbook of Drug Design and
Discovery Fifth edition (2016), p.17)

A shift of equilibrium through the formation of bound complex as illustrated in
the Figure 1.3 results in a higher affinity. In this case, K value becomes more positive
and AG more negative. In medicinal chemistry the affinity is given either by inhibition
constant (K;i) or the half maximal inhibitory concentration (ICso). Since Ka = 1/K; the

equation 1 can be written as

AG = RTInK; )

AG has enthalpic (AH) and entropic (AS) components:
AG = AH —TAS (3)
In some cases, 1Csp can be used instead of K values, in which case the 1Cso values
are converted to the inhibition constant K; by the Cheng-Prusoff equation:

ICsg 4
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where [L] is the concentration of the ligand used in the assay, Kp is the affinity of
the ligand for the receptor.

ICso value is related to activity and K is related to binding. While K is
independent of ligand and its concentration, 1Cso values are concentration dependent.
This property of Ki makes comparisons of different assays possible [42].

1.5 Computer-Aided Drug Design

With the rapid development of computational facilities and efficiency, CADD has
become an important tool in drug discovery process [43]. Besides that, the exponential
growth of protein crystal structures deposited to the Protein Data Bank (PDB) has
expanded the potential of SBDD. The number of crystal structures has reached

~180,000 today (Figure 1.4.). The major tools of SBDD are docking and scoring.

I Number of Structures Released Annually Total Number of Entries Available
180000
160000
140000
120000
»
o
& 100000
‘s
& 80000
=
=]
2
60000
40000
20000
. A 5 il L==snssnnnEEniiENl:
OCA LD ON VO OCA LN O OLA RO NL IO DLOOONNL Y DDA D O90N
R R R N e B R e o S T

Figure 1.4 Overall growth of released structures per year (rcsh.org, Access date: May 13, 2021)
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1.5.1 Ligand Docking

Molecular docking aims at identifying the native structures of P-L complexes
using computations. A large number of docking programs and web services have been
developed [44], such as AutoDock [45], DOCK [46], GOLD [47], Glide [48],
AutoDock Vina [49], SMINA [50], PLANTS [51] etc.

Docking protocols produces P-L complex structures. A docking software consists
of a search algorithm for generation of P-L complexes and a scoring function. A
successful protocol will provide more realistic poses of ligands in an active cavity of
a protein.

Search algorithms can explore the binding in three different ways. The simplest is
called rigid docking where the ligands are limited with translational and rotational
degrees of freedom. Flexible docking explores different positions by adding a
conformational freedom to the ligands. The third way is to extend the conformational
search space by considering the protein flexibility which is called induced fit docking
[52].

1.5.2 Scoring Functions

Scoring functions are used for estimation of noncovalent interactions in a given
P-L complex structure by using mathematical approximations. It is the most important
component of a molecular docking for the binding pose prediction process [53]. Thus
they are mainly responsible for the success or failure of a docking software [54].

Scoring functions can be divided into empirical, knowledge-based and physics-
based.

Empirical scoring functions estimate the binding free energy by using a set of
parameters which were generated from protein-ligand complexes with known

affinities. These parameters are used to describe the interaction as components made



CHAPTER 1: Introduction -13-

of hydrogen bonding, ionic bonding, non-polar interactions, desolvation and entropic
terms which are multiplied by weight constants [53]. Glide Score [55] and DOCKG6

[56] are examples for empirical scoring functions.

Knowledge-based scoring functions calculate the affinity by using energy
potentials defined for atom or chemical group pairs. Score is given as a sum of each

individual interactions [57].

Physics-based scoring functions mostly use MM methods for non-covalent
interactions (sum of electrostatic and dispersion interactions) combined with implicit
solvation free energy term. Change of internal energy of the ligand (deformation
energy) is added to produce the final score [52]. Docking software programs such as
DOCK [46], GOLD [58], and AutoDock [59] have some differences in the treatment
of hydrogen bonds. The common drawback of MM-based methods is their inherent
lack of description of QM effects, such as charge transfer, polarization or o-hole. QM
calculations provide accurate description of these effects but are computationally
demanding [60]. SQM-based scoring functions which were introduced by Kenneth
Merz group [61] were more cost-effective than QM but had some accuracy issues.
SQM-based scoring function showed superior performance over MM in the case of
metalloprotein [61], [62]. However corrections were needed for inaccurate
descriptions of hydrogen bonding and dispersion interactions [63], [64]. We developed
these in our laboratory and resulting PM6-D3H4X method is fast and provides accurate
description of all types of non-covalent interactions without need for any specific
parametrization. The PM6-COSMO SF was successfully used for hundreds of P-L
complexes [65], [66].

1.5.3 Structure-Based Virtual Screening

Drug discovery process was based on random searching and empirical observations

until 1980s. This process was improved by high-throughput screening (HTS) which
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allows for automated screening of thousands of compounds against a target (a protein
or a cellular assay) in a very short time [52]. Same strategy also started to be applied
as virtual screening (VS) after the successful applications CADD studies. VS became
a necessary tool for assisting the drug development processes. Structure-based virtual
screening (SBVYS) is a technique which predicts the affinity of the ligand molecules
against a target with a known 3D structure by forming complex structure [67].
Although a combination of molecular docking followed by reliable scoring approach
sounds as a good idea, a universal solution for the challenges regarding generating

correct binding positions or accurate scoring has not yet achieved.
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CHAPTER 2

PROJECTS

2.1 Host-Guest Complexes

Understanding host-guest interactions is an important step towards building our
knowledge of noncovalent interactions. Besides their practical use mentioned in
Chapter 1.4.1, host-guest complexes serve as great templates for computational
chemistry by having challenging chemical properties comparing to their dimensions.
Host molecules can vary by size which can affect their response on binding to guest
molecules in steric, conformational and electronic manners. We have shown the gas
phase interactions of closo,closo-[B21Hig]™ (B21) with macrocyclic a-, f- and -
cyclodextrin (CD) host molecules with the existence of two K* counterions. (See,
Publication A).

Figure 2.1 The most stable complexes of [B-CD + B21 + 2K]" (left) and [y -CD + B21 + 2K]".

Reprinted from Publication A.
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After the initial energy scans, it is shown that - and y-CD hosts can
accommodate B21 guest (Figure 2.1).

Interaction energies were computed according to the eqn (5)
AE = E(total complex) — E(h05t+1(+) - E(B21+K+) )

Even the y-CD showed more deformation upon complex formation, overall
interactions for both [B-CD + B21 + 2K]" and [y -CD + B21 + 2K]" were almost
identical (-51.8 and -51.1 kcal/mol, respectively).

2.2 Protein-Ligand Complexes

Physics-based approaches in SBDD field require well refined three-dimensional
structures of protein-ligand complexes. The performance of methods is evaluated
under two criteria as sampling power and ranking power. Sampling power measures
the ability of picking correct binding mode within a set of conformations of a ligand
in the active cavity. Ranking power term indicates the success rate of ordering
predicted affinities of different compounds versus their experimental affinities. If the
applicability of the method is suitable for processing large databases, screening power

becomes an important parameter for evaluation of enrichment in VS studies.

2.2.1 Sampling Power

Docking/scoring is one of the most frequently used tool in SBDD. While docking
algorithms search for poses, SFs rank them by their predicted affinities. Ideally, a
successful docking/scoring method provide the native binding pose as best binder.
Most of the functions fail for finding or accurately scoring the native binding poses

because of heavy approximations or missing parameters. Therefore, we developed and
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tested an SQM based scoring function which can calculate noncovalent interactions

with a high accuracy.

Since QM based methods requires high quality structures for interaction energy
calculations, we applied strict criteria for the selection of crystal structures (See the
Method, Publication B).

Based on the selections, we ended up with 17 diverse set of protein structures.
The SQM/COSMO SFs performed better than all other classic SFs with a significantly
lower hard false positive (HFP) rates per target (see Publication B, Figure 1B) and in
total (Figure 2.2).

700
635
600
500 m DFTB3-D3H4X/COSMO
425 m PM6-D3H4X/COSMO
400 350 ® AutoDock Vina
300 = AutoDock4
211 Glide XP
200 W UCSF Dock
100
40 42
, N .

Figure 2.2 Number of total HFPs for six scoring functions. (Reprinted from Publication B,
Figure 1A)

2.2.2 Ranking Power

Success of the ranking power of a SF can be measured by correlation of
experimental binding affinities to computationally predicted affinities. Basically,

application of the methods is the same as in sampling studies. But in the ranking case
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(Publication C), an SF should additionally be able to distinguish the stronger binders
from the weaker ones. For this task, we used a database of 10 carbonic anhydrase 11
(CAI) inhibitors. Having a Zn?* in the active site of the protein was the main challenge
for all the SFs. SQM/COSMO outperformed all other SFs and showed better
correlation (R?) and predictive index (PI) (detailed in the Publication C) performances
(0.77 and 0.92, respectively).

2.2.3 Screening Power

Similar to the ranking step, the main aim of the VS studies is to prioritize the
active molecules from the inactive ones. But in this case, instead of having few
inhibitors, we must deal with huge libraries consisting of at least few thousands of
compounds. Processing huge libraries require fully automated consistent and specific
preparation protocols for each scoring function. Furthermore, resource and time

management or each SF becomes a necessary step.

In our virtual screening study (Publication D), we selected a database
consisting of 4541 inhibitors and decoys prepared for HSP90 protein from DUD-E (a
Database of Useful Decoys-Enhanced). We applied virtual screening by using 9
different standardly used scoring functions along with our MM (based on
AMBER/GB), SQM: (SQM/COSMO scoring applied on AMBER forcefield
optimized geometries) and SQM: (SQM/COSMO scoring applied on geometries
generated by restrained optimization protocol) scoring functions. Application of

virtual screening protocols and result evaluation steps are detailed in the publication.

MM, SQM: and SQM: scoring functions are pure physics-based scoring
functions. They treat the scoring using the same interaction energy calculation formula
without any weight on any of the terms. Interestingly for MM, all our SFs

outperformed other conventional scoring functions in early and overall enrichment
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comparisons. This shows us that the interaction energy calculation successfully

included major contributions more accurately.

Another interesting case is seen when we switch from MM to SQM:. Even
though we got a higher early enrichment for SQMz scoring, MM performed better in
overall enrichment. Simply, this was due to incompatibility of geometry generation
and energy evaluation methods. We fixed the issue by forcing the AMBER
optimization protocols to use restraints generated from SQM/COSMO optimized
isolated ligand. This solution brings us the almost best possible overall enrichment. It
also emphasizes a very tiny but extremely important detail: accurate definition of the

geometry is the first and most important key.
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CHAPTER 3

CONCLUSION

In quest for a universal method for accurate descriptions of non-covalent
interactions in host-guest or protein-ligand complexes we need to evaluate every
possible scenario which may affect the results. In this aspect, computational chemistry
is not only a branch to give us answers, but also produces some questions to be
answered experimentally. Multidisciplinary collaborations of different fields with
computational chemistry leads us to find more efficient ways to understand structure-

activity relationship further.

In this thesis, we first dealt with host-guest molecule interactions (Publication A).
Understanding of these interactions are important for determining physicochemical
behavior of the boron-cage structure in an organic cavity and the respond of the guest
molecule. Also, one of the most important subjects in this study was the introduction
of K™ ions to the calculations. While they were contributing to the structural stability,
they were also greatly increasing the computational demand because of increased

degrees of freedom.

In the following project (Publication B), we evaluated the sampling power
performance of two SQM based SFs versus other SFs on a diverse set of protein-ligand

complexes. This study also shown us the generality of the SQM based SFs.

Next, (Publication C) we presented the ranking power of SQM/COSMO scoring
function on a challenging set of 10 inhibitors binding through Zn?" of carbonic
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anhydrase 11 protein. While we were getting fairly good results from SQM/COSMO

scoring function, there were no correlation from other standard scoring functions.

Encouraging results enabled us to evaluate the screening power of SQM/COSMO
scoring function on a large database made of active and decoy compounds (Publication
D). Indications from the initial tests showed that an application of SQM/COSMO
scoring function would only be possible by systematically eliminating the redundant
structures obtained from extensive docking calculations. By this way, we achieved an
enrichment value close to perfect case by calculating only 1.5% of the generated
screening database, at SQM/COSMO level.

As a conclusion, SQM/COSMO provides the best compromise between the
computational cost and accuracy of describing all types of non-covalent interactions.
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The weakly coordinating binary macropolyhedral anion closo,closo-
[Bs1Higl ™ (B21; D3, symmetry) has been synthesized using a simplified
strategy compared to that in the literature. While gas-phase complexes
of B21 with B- and y-cyclodextrin (CD) were detected using ESI FT-ICR
spectrometric measurements, #-CD did not bind to the B21 guest. This
spectroscopic evidence has been interpreted using quantum-chemical
computations, showing that - and y-CD are able to interact with B21
due to their larger cavities, in contrast to the smaller «-CD. The hydridic
B—H vectors of the B21 anion interact with K* counterions and, via
dihydrogen bonding, also with the partially positively charged hydrogens
of the CD sugar units in the modeled - and y-CD complexes. In
summary, it has been shown by combined spectrometric/computational
analysis that macropolyhedral boron hydride anions with two counter-
ions can form stable complexes with - and y-CD in the gas phase,
offering a new perspective for the future investigation of this remarkable
anion in the areas of supramolecular and medicinal chemistries.

Introduction

The icosahedron is the most symmetrical way to arrange twelve
atoms into a polyhedral cluster. It is the quintessential structural
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motif in boron hydride cluster chemistry, represented by the
closo-[B1,Hy,]* dianion, which has I, point-group symmetry.
While parent boron hydrides have a tendency to fuse together,
this happens not through a single shared boron atom, but rather
requires at least one joint B-B vector.! In the case of the joining
of two closo-[By,Hy,*~ cages, three vertices need to be shared.”
On that basis, closo,closo-[B,1H,5]” (abbreviated as B21 in this
study) is formed by the oxidative coupling of two closo-[B;oHyo)*
clusters. The resulting closo,closo-[BooHys]*” macropolyhderal
anion is isomerized, which is followed by the insertion of an
additional boron vertex by heating with BH;-NEt;.* The B21 anion
adopts overall Dy, symmetry, indicative of four symmetrically unique
boron environments instead of one in closo{B,Hy,*~ (Fig. 1).
Boron clusters form a number of unique types of noncovalent
interactions,* of which dihydrogen bonding® and B-H- - -cation
interactions are important for this study. Both interactions are
based on the fact that boron-bound hydrogens are slightly
negatively charged due to the lower electronegativity of boron
as compared to hydrogen. This is evident from the calculated

Fig. 1 A molecular diagram of closo,closo-[BziHigl™ with Dz, symmetry
that distinguishes between individual types of boron atoms.
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electrostatic potential (ESP) or partial atomic charges obtained
by the restrained fit to the electrostatic potential (RESP)
methodology.® These two types of interaction (B-H. - -cation
interactions’ and dihydrogen bonding®) have been found to be
crucial for the binding of boron-cage-containing inhibitors to
protein receptors. Host-guest chemistry presents a broad field of
supramolecular chemistry, that is based on the specific non-
covalent recognition of inorganic ions or small-molecule organic
guests by macrocyclic organic hosts. Typically, cationic or neutral
guests are encapsulated into the cavity of neutral macrocyclic hosts.
Cyclodextrin (CD) molecules, very well-known macrocyclic hosts,
have three major forms differing in the number of glucose ring
molecules: a-CD contains six, B-CD seven and y-CD eight units. CDs
are able to encapsulate in their cavities a wide range of hydrophobic
organic guests; in contrast, only a few heteroborane-based guests
have been reported.’

The complexation of boron cluster anions with hosts has been
observed in solution in several examples. In each of the known
complexes the anions have adopted the icosahedral structural
motif.'® To our knowledge, reported gas-phase complexes with the
same cage architecture are exceptional.'! The study mentioned in
ref. 11a reports very strong intrinsic intermolecular interactions of
closo{B1;Xy]"~ (X = H, F, Cl, Br and 1) with several neutral organic
receptors, where these dianionic halogenated closo-dodecaborates
displayed selectivity for the large hosts with deep hydrophobic
polarizable pockets, such as in the case of tetrathiafulvalene-based
hosts or spherical cavities in the case of CDs. 1t is the closo{B,Fy,]*~
anion that strongly interacts with $-CD as reported in ref. 11a. The
formation of these charged complexes was proven by means of
electrospray ionization mass spectrometry (ESI-MS), which is a
powerful tool to study the stoichiometry and interactions of supra-
molecular assemblies in the gas phase."*® Postulated weak gas-
phase basicities (GB) of these dianions served as an alternative
explanation for the stability of these gas-phase complexes.

It is important to mention that (also due to its complicated
synthesis®) no parent macropolyhedral borate has been found to
interact with any organic molecule. We have therefore under-
taken investigations aimed at testing the possibilities of the
mutual interaction of purely organic and purely inorganic
systems in the gas phase, the inorganic species being a unique
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joint-icosahedral boron hydride. The results are important for
the understanding of macropolyhedral boron cluster affinity
since this cluster is relatively inert to conventional substitution
reactions, and because its structure differs from its geometrical
building block, the closo-[By,Hy,]*~ dianion.

Results and discussion
Simplified synthesis of B21

We based our synthesis on the synthetic procedure of B21 reported
in ref. 3. However, we have improved one step in this reaction
pathway; namely the rearrangement of trans{B,HsP~ upon
protonation in anhydrous HF, which provides the face-shared fac-
[B2oHys[P~- In order to avoid this time-consuming operation, we
have proposed a simple step based on the reaction of the triethyl-
ammonium salt of trans{B,oH, s>~ with BF;-Et,O in the presence
of dioxane. Indeed, this yields the fac{B,oH,5]*~ isomer in the form
of its trimethyl ammonium salt, which would otherwise be difficult
to obtain, in 80% yield based on the starting trans isomer.

Mass spectrometry

Although several ESI detection conditions were examined by
optimizing the corresponding FT-ICR parameters, the binary
(B21 + CD) complexes were not detected using mass spectrometry. In
the negative mode of the ESI FT-ICR spectrum (Fig. S1 (ESIt); m/z
range <300), we found isotopic mass distribution of a very high-
intensity peak corresponding to the singly-charged anion B21. In the
positive mode, my/z values higher than 1400 (for the 3-CD case) or
1600 (for the y-CD case) were identified, with mono-charged cationic
complexes of the [B-CD + KB21 + K]' and [y-CD + KB21 + K]' types
being formed. Each of them is depicted with its corresponding
isotopic mass distributions in Fig. 2.

Computational section

Electronic properties of B21. The hitherto unknown electronic
properties of isolated B21 were studied initially using QM methods.
The computed electrostatic potential (ESP) surface of B21 indicates
that the negative charge is distributed over the whole molecule
(see Fig. 3). Consequently, all BH vertices should possess similar
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Fig. 2 The ESI FT-ICR spectra, in the positive mode, showing the isotopic mass distribution of cationic complexes formed by KB21 with B-CD (left, the
range of 1445 < m/z < 1470) and y-CD (right, the range of 1600 < m/z < 1635).
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Fig. 3 The electrostatic potential (ESP) surface on 0.001 a.u. computed at the HF/6-31G* level (A). The ESP color range in kcal mol™*. The HOMO (B) and

LUMO (C) of B21 were derived at the same level of theory.

chemical properties. As indicated by the HOMO of B21, attack by
H' can occur close to each of the ortho, meta, and para BH
vertices (¢f Fig. 1). Indeed, three structures of HB21 differed in
the positions of H' in relation to these three kinds of BH vertices;
all were quite similar in energy. The “meta”-HB21 isomer was
about 2.3 kcal mol™' less stable than “para’-HB21, ie. its
population at 295 K should be below 2%. On the other hand,
the energetic difference between “‘ortho”-HB21 and “para”-HB21
was only 0.6 keal mol *, with the structure in which the proton was
close to the para boron atom computed as the most stable one.
This would lead to a mixture containing 75% ‘“para”-HB21.
The structure with the extra H atom bonded to an ipso-boron atom
was a first-order stationary point. From these calculations the gas-
phase basicity'” (GB) of B21 was computed to be 233.1 keal mol ,
a value very close to the experimentally determined GB for
histidine (232.9 keal mol ').'® The gas-phase acidity of water
is reported to be 158.3 kecal mol *.'” In order to compare
GB of B21 with that of other boron clusters forming stable
complexes with CDs in the gas phase, we also computed GB
values for closo-[By,Hy,)*  and closo{By,Fy,]* . The obtained
GB values were 355.5 and 313.7 kcal mol ', respectively. B21 is,
therefore, a considerably weaker base in the gas phase than
the icosahedral boron clusters. The weak GB enables closo-
[BioF12*” to form stable binary dianionic complex with
B-CD,''* although no structure of this complex has yet been
reported.

Complexes. Initial energy scans were performed for the
[¢-CD + B21], [B-CD + B21] and [y-CD + B21] binary complexes,
revealing that «-CD could not encapsulate B21 due to the small
size of the host (the energy minimum was found at a distance of
5.5 A; Fig. 4). As a consequence, o-CD was disregarded from
further consideration. The [p-CD + B21] and [y-CD + B21] complexes
exhibited a fully encapsulated minimum (z-distances of 2.0 and
1.0 A, respectively), which is consistent with experimentally
observed bound complexes.

In order to understand the complex formation of [B-CD +
B21 + 2K'] and [y-CD + B21 + 2K'] complexes, we analyzed not
only the total interaction energies of the quaternary complexes
but also all other possible pairwise interactions that can occur
within the studied complexes. The obtained interaction energies
are summarized in Table S1 (ESIT).
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Fig. 4 DFT-D3/TPSS/TZVPP potential energy scans. Relative energy in
kcal molt and distance in A.

Complexes of B21 with K*. The highly symmetrical structure
of B21 resulted in only four binding modes for K'. Fig. 82 (ESIY)
shows the three most favorable positions according to the
computations performed. The K ion interacts with four BH
vertices of B21 (two meta and two para), and the affinity of B21
to a single K ion is directly proportional to the number of
donor hydrogens. When two K ions interact with B21, the
mutual positions of the K* ions are more important than the
number of hydrogen donors. The most stable arrangement
occurs when the K™ ions are located on opposite sites, ie.
interacting with (a) three ortho BH vertices or (b) two meta
and two para BH vertices (see Fig. S3, ESIT).

Complexes of f-, y-CD with K. The most stable binding
position of K" ion to the host molecules was dictated by the
smaller openings of the CD molecules (see Fig. S4, ESI}). The K*
ion caused significant ring deformations for both B- and y-CD.

Complexes of -, y-CD with B21. The structures obtained show
that the chance of the guest molecule penetrating the cavity is
proportional to the host molecule size (Fig S5, ESIT). y-CD with
its larger cavity is a more favorable host than p-CD (Fig. S5, ESIT).
The interaction energies for the [B-CD + B21] and [y-CD + B21]
complexes were computed to be —24.8 and —31.0 kecal mol %,
respectively. Although, the interaction energies of the binary
complexes are highly negative, and the GB of B21 is very low, the
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a b

Fig. 5 The most stable computed structures of the (a) [3-CD + B21 + 2K]*
and (b) [y-CD + B21 + 2K]* complexes.

binary complexes were not experimentally observed under the
conditions employed.

Quaternary complexes of -, y-CD with B21 and 2K’. The most
stable [B-CD + KB21 + K]" and [y-CD + KB21 + K]" complexes
that are predicted by calculations are shown in Fig. 5. Armed
with the knowledge of the pairwise interactions described
above, we computed interaction energies according to eqn (1):

AE = E(total complex) E[host+l(*) - E(BZI+K] [1]

The K' ions were placed in the small openings of the guest
molecules and interacted with both O atoms of the host and H
atoms of the guest molecules. They functioned as a bridge and
reduced the host deformations.

It is quite apparent that the BH vertices of B21 are
of hydridic nature. The hydrogen atoms of B21 form short
contacts, Le. less than 240 pm (the sum of the van der Waals
radii of two hydrogens), with the partially positively charged
hydrogens bonded to carbon or oxygen atoms of the sugar
units. The [B-CD + B21 + 2K]* complex exhibited six (prevai-
lingly meta BH) vertices, with the distances ranging from 184 to
219 pm, whereas the [y-CD + B21 + 2K]* complex had seven
vertices (of all kinds) and the distances ranged from 198 to
237 pm. In both cases the shortest dihydrogen bond was a
result of the participation of a polar hydroxyl group. B21
penetrated the cavity of B-CD almost parallel to the z axis (see
Fig. 5a) in the [B-CD + B21 + 2K]" complex. Furthermore, the
conformation of [B-CD + K]" in the [B-CD + B21 + 2K]* complex
is 27.2 kecal mol™* less stable than the optimal geometry of
isolated [B-CD + K]', which considerably affects the resulting
interaction energy. In the [y-CD + B21 + 2K|' complex, on the
other hand, B21 binds y-CD in a position perpendicular to the
z axis (see Fig. 5b). The weaker interactions (e.g. longer dihydrogen
bonds, see above) in the [y-CD + B21 + 2K]" complex were
compensated by the smaller penalty for [y-CD + K] deforma-
tion (an energy penalty of 14.3 keal mol™"). Consequently, the
computed total interaction energies of the [B-CD + B21 + 2K]"
and [y-CD + B21 + 2K]' complexes (as provided by eqn (1),
ie. KB21 with [CD + K]') were nearly identical (—51.8 and
—51.1 keal mol ", respectively) despite differences in the B21
binding modes to - and y-CDs in the quaternary complexes.
Note also that outer interaction of B21 with B-CD and vy-CD
would have been disfavored since the contact surface area
would be considerably reduced.
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Conclusions

The synthesis of B21 has been improved by simplifying the
most complicated rearrangement in the synthetic procedure.
This allowed B21 to be synthesized more quickly and in higher
yield than previously. B21 was found to be inert to various
attempts to obtain mono-substituted B21. With the exception
of Bipsa—Bipso Vectors, all the remaining B-B separations con-
tribute to the LUMO, which also features participation of the
terminal hydrogens. It is possible that nucleophilic attacks (e.g.
with OH™ or halogenide anions) occur at these B-B-H sites and
no geometrical preference can be determined from the LUMO.
This might account for the fact that all synthetic efforts to
prepare mono-substituted B21 resulted in the mixtures of
differently substituted derivatives of B21.

Despite the low chemical reactivity of B21, we observed gas-
phase interactions of B21 with - and y-CD. These interactions
were examined by ESI FT-ICR spectrometric measurements. In
contrast to both larger CDs, a-CD did not bind the anion, which
was explained by its spatial requirements. The structures of
both B- and y-CD complexes were determined using QM
calculations. Hydridic B-H vertices of the anion interact both
with the partially positively charged hydrogens of the sugar
units via dihydrogen bonding and with potassium counterions
through B-H- - -cation interactions in the computed structures
of the complexes. The observed interactions of the anion under
investigation give hope to the tantalizing possibility of promising
interactions with biomolecules. Having knowledge of these
kinds of interactions is of great importance, in particular with
the precedence of the ability of joint icosahedra to inhibit
biologically relevant targets.*
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ABSTRACT: General and reliable description of structures and energetics in protein—
ligand (PL) binding using the docking/scoring methodology has until now been elusive.
We address this urgent deficiency of scoring functions (SFs) by the systematic
development of corrected semiempirical quantum mechanical (SQM) methods, which
correctly describe all types of noncovalent interactions and are fast enough to treat
systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and
SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO)
implicit solvation model in so-called “SQM/COSMO” SFs and have shown unique
recognition of native ligand poses in cognate docking in four challenging PL systems,
including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL
complexes and compare their performance with four widely used classical SFs (Glide XP,
AutoDock4, AutoDock Vina, and UCSE Dock). We observe superior performance of the
SQM/COSMO SFs and identify challenging systems. This method, due to its generality,
comparability across the chemical space, and lack of need for any system-specific
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parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in
structure-based drug design and serving as a reference method for the development of other SFs.

B INTRODUCTION

In structure-based drug design, docking/scoring is a prime and
well-established computational tool. Molecular docking gen-
erates ligand geometries bound to the protein (poses), whereas
scoring using scoring functions (SFs) ranks them by the
predicted affinity (score). Owing to the approximations
embodied in docking/scoring methods for the sake of their
acceleration, their accuracy has often been compromised.'
Nevertheless, recent methodological advances made docking/
scoring methods an indispensable tool in discovering new
protein ligands.”

The “docking power” or “sampling power”>* of a docking/
scoring method is assessed by its ability to identify the native
ligand pose (root-mean-square deviation (RMSD) from the
crystal pose <2 A) in protein—ligand (PL) complexes.
Comprehensive testing across diverse PL complexes has shown
that in up to 80% of PL complexes this task can be
accomplished.*™ However, classical SFs had troubles with the
identification of the native binding mode as the best-scoring pose
(especially in the case of metalloproteins, halogenated ligands,
inorganic ligands, etc.) . Thus, reliable identification of native PL
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poses within a diverse set of PL complexes using a single SF
remains a challenging task.>**

The four major a{)})roaches toward scoring are empiric
knowledge-based,s‘ "% statistical /machine lea.rning,ls'16
physics—based.w’ls The first three approaches require a training
set, and by use of gara.metrization and statistics, useful models
can be obtained.” However, because these approaches are
dependent on the training set, their predictive power is limited.
In contrast, physics-based methods rely on a generally valid
description of PL interactions. Traditionally, such approaches
were limited to molecular mechanics (MM) methods and
simplified variants thereof. Thus, these approaches were
inherently limited by the underlying approximations, most
importantly the implicit treatment of electrons.

A general solution to the problem of accurately calculating
noncovalent interactions in PL systems is the use of quantum
mechanics (QM).*° With QM methods, phenomena of quantum
origin, such as charge transfer, are described without further ad
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hoc parametrization. This is important for systems involving
halogen bonding,u’22 metalloprotein binc]ing,23 inorganic
Iigands,m_26 or covalent bond formation.”” But because of the
high computational demands, QM calculations of sufficient
quality (e.g, DFT-D3 level with a triple-{ basis set) are limited to
a few hundred atoms. This limitation can be overcome by use of
fragmentation®®*” or a QM/MM approach.*’~** Another route
is the use of semiempirical QM (SQM). The first QM-based SF
was introduced by the Merz group.™ They combined the Austin
model 1 (AM1) SQM method with empirical dispersion (D) and
implicit solvation (Poisson—Boltzmann (PB) model). Its
validation on a large dataset of PL complexes showed its
superior performance, especially for metalloprotein—ligand
complexes.”® Although this was an important pioneering step,
the accuracy of the underlying methods, both for the vacuum part
(AM1-D)*" and for solvation (PB),*® was not sufficient to yield
quantitative results. More recently, Sulimov laboratory used the
PM7 SQM method™ in conjunction with the conductor-like
screening model (COSMO) implicit solvent model®® for
identification of native ligand poses of 16 PL complexes in
cognate docking,*""* They showed superior performance of
their SQM/COSMO SFs over force-field-based scoring. We
should note here that PM7 results for noncovalent interactions
can be slightly improved by using the latest version of empirical
corrections to the PM6 SQM method (PM6-D3H4X, see
below).*

In our laboratory, we have been systematically developing
empirical corrections to SQM methods to accurately treat an
array of noncovalent interactions.”” The latest version of
empirical corrections for dispersion, hydrogen bonding, and
halogen bonding yielded the PM6-D3H4X>"** method, which,
coupled with the COSMO implicit solvent model,** forms the
core of our SQM-based SF (eq 1).454

score = AE, + AAG

int solv

- TASint

+ AG™  (P) + AG™ (L)

(1)

The score (an estimate of the PL binding free energy) is
expressed as an unweighted sum of thermodynamic terms. It
consists of the gas-phase PL interaction energy (AE,,), the
change in solvation/desolvation free energy upon complex
formation (AAG,,,), the change in the conformation “free”
energies of the protein and ligand [AG™(P,L)], and the
interaction entropy change upon binding (TAS,,). """ The PL
complexes are optimized using the solution-phase SQM method
before scoring. The AE,, term is favorable for complex
formation and usually is the largest in magnitude. It can reach
a few hundreds of kcal/mol for charged or polar ligands. The
AAG,,, term opposes binding and can be nearly as large as the
first term. These two dominant terms thus partially compensate
for each other, and the final score is an order of magnitude
smaller. Using this SF (eq 1), we have rationalized the binding of
series of ligands to a dozen of protein targets,m’zz‘%_SO including
covalent ligand binding.”” It should be noted that this SF can also
be extended to evaluate explicit solvent effects.’”***!

Recently, we have accelerated our SQM-based SF by
considering only the first two dominant terms and replacing
the time-demanding SQM optimization with a quick MM
relaxation of hydrogens.23 We have shown in four difficult PL
complexes that this SQM/COSMO SF at the PM6-D3H4X level
outperforms eight widely used SFs in native ligand pose
identification in cognate docking. The number of false-positive
(FP) solutions (i.e., those poses that scored better than the native
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one) was up to 1 order of magnitude lower than that for the
classical SFs.** In three PL cases, it was even 0. In the challenging
system of the tumor necrosis factor-a converting enzyme
(TACE) metalloprotein featuring Zn>" in the active site, which
is bound by the thiolate group of the ligand, 39 FPs were found.”
A major improvement (FP = 0)°” was observed when the AE,,
term was calculated with a more robust SQM method, the self-
consistent-charge density-functional tight-binding method aug-
mented with empirical dispersion (previously shown to be useful
for the description of biomolecules)*® and hydrogen-bonding
corrections (SCC-DFTB3-D3H4, abbreviated DFTB3-
D3H4).* The high-qguality description of the other three PL
systems was retained.”” The price for the improvement was a
higher but not unsurmountable computational cost. It should be
noted that two recent studies used the uncorrected SCC—DFTB
method in a QM/MM setup and reported success on the correct
ligand binding geometries toward metalloproteins.”** Their
approach toward the computationally expensive task was to use a
rather small QM part consisting of Zn>, its coordinating protein
side chains, and the ligand on a large number of PL systems.” "

In this study, we aim to validate our SQM/COSMO SFs™*2
for native pose identification in cognate docking on a data set
consisting of 17 PL complexes from five diverse classes, selected
using strict criteria for physics-based scoring. We apply two
variants of the SQM/COSMO SF (AE,, term at the PM6-
D3H4X or DFTB3-D3H4X level)*** and compare them with
four standard SFs (Glide XP,** AutoDock4,56 AutoDock Vina,*’
and UCSF Dock®®). The performance criterion is the number of
FPs™*** with an extended definition presented here. We show
here that the unique behavior of the SQM/COSMO SFs
observed in our recent studies®>* hold across 17 diverse PL
complexes and gives promise of generality after comprehensive
large-scale testing in the near future.

B RESULTS AND DISCUSSION

Data Set. In this work, we extend our previous pilot studies
on four difficult PL systems™>** to 17 pharmaceutically relevant
and diverse PL complexes from five classes, including three
enzyme classes (transferase, hydrolase, and lyase), one
chaperone, and two nuclear receptor classes from the PBDbind
“core set”” (for details, see Methods section). We apply the
strict criteria needed for physics-based scoring. Specifically, the
crystal structures of the complexes have resolutions better than
2.5 A, well-resolved electron densities for the ligands, and protein
active sites. The ligands have variable chemistries, sizes
(molecular weight of 305—666 Da), charges, and flexibilities
(for details, see Methods section). Their binding constants
toward their targets range from micro- to picomolar.

The crystal poses of the ligands were scored as reference. The
ligand poses generated previously by docking® with seven
docking programs (for details, see Methods section) totaled
4566 poses. RMSD-based clustering (see Methods section) of
the poses was carried out to avoid pose redundancy. After this,
the number of poses decreased to 3328, corresponding to
approximately 250 poses per target. A comprehensive evaluation
of the recognition of near-native poses requires a balanced
distribution of RMSDs of the docked ligand poses with respect to
the crystal (native) geometry from very similar to very dissimilar
(up to 10 A). In most of the PL systems, 20—60% of poses had
RMSD <2 A (Figure S1A). Furthermore, poses were evenly
distributed in RMSD ranges of 2—5 and 5—10 A (roughly 20—
40% for each category). Figure SIB shows minimal RMSD
(RMSD™") for the poses studied. Near-native poses within the
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Figure 1. Number of HEP solutions for the six SFs used here across all the 17 PL systems studied. (A) Number of HEPs and (B) HFPs for individual PL

complexes sorted by ligand charge: neutral (left) and charged (right).

experimental accuracy of X-ray crystallography of 0.5 A°*®" were
found in all but two cases (10GS: RMSD™" = 0.85 A and 2VOT:
RMSD™" = 0.70 A). However, these cases only slightly exceeded
the threshold.

Scoring. For each of the six SFs (two variants of SQM/
COSMO SF and four standard SFs; for details, see Methods
section), the scores of the docked ligand poses in their respective
target proteins were calculated, transformed to relative scores
with respect to the score of the crystal pose, and normalized (see
Methods section).

The overall sampling power of all the SFs is shown as the
enrichment plot (Figure S2), that is, the percent of PL cases (y
axis) in which the best-scoring ligand of a given SF has defined
RMSD (x axis) to the crystal pose. In the standard range of
RMSD up to 2 A, the SQM/COSMO SFs at the DFTB3-D3H4X
level perform the best (88% of PL systems), followed by SQM/
COSMO at the PM6-D3H4X level together with UCSF Dock
(82% of PL systems). Slightly worse is the performance of Glide
XP (76%), followed by AutoDock4 (71%), and AutoDock Vina
(65%) (Figure S2). In recognition of near-native poses (RMSD <
0.5 A), the two SQM/COSMO SFs together with AutoDock
Vina perform the best (47%), followed by AutoDock4 and UCSF
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Dock (419) and Glide XP, which recognize the poses only in
29% of cases.

The SQM/COSMO SFs also had the lowest number of PL
complexes (two for DFTB3-D3H4X/COSMO, Table S1) for
which the best-scoring pose exceeded the threshold for success of
2 A. This was closely followed by SQM/COSMO at the PM6-
D3H4X/COSMO level, UCSF Dock, and Glide XP (three
cases). Five and six failures were found for Autodock4 and
AutoDock Vina, respectively (Table S1). Averaging the RMSDs
of the best-scoring poses across all 17 PL complexes (and
counting all the failures >2 A as 2.1 A), DFTB3-D3H4X/
COSMO was the winner (0.71 A), closely followed by PM6-
D3H4X/COSMO and UCSF Dock (0.77 and 0.79 A,
respectively; Table S1). Worse results (around 1 A) were
obtained for AutoDock Vina, AutoDock4, and Glide XP.

For detailed performance evaluations, we use the number of
FP solutions criterion™"” with an extended definition presented
here. Previously, FPs were defined as those poses that scored
better than the native pose (defined by a 0.5 ARMSD cutoff from
the crystal pose due to inaccuracies of crystal structures).”>*”
Here, we allow room for larger uncertainties of native pose
recognition by defining “hard FPs” (HFP) in which the cutoffs
were increased to RMSD >2 A and score better than —1 keal/

DOI: 10.1021/acsomega.7b00503
ACS Omega 2017, 2, 4022-4029



ACS Omega

H3CO,S,
N

O

Cl

9. NH

NH,*

OH
20BF

3GCU

2XB8

2VW5
Figure 2. Two-dimensional structures of the ligands studied.

3GOW

mol. The RMSD cutoff now also includes the effects of flexible
parts of the ligands sticking out to the solvent, and the score
cutoff corresponds roughly to 2—3 kcal/mol of unscaled
energies, which are rough error bounds of the physics-based
method. The HFPs for AutoDock Vina, AutoDock4, Glide XP,
and UCSF Dock were high—211, 350, 425, and 635, respectively
(Figure 1A). The SQM/COSMO SFs performed much better
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with the numbers of HFPs being up to 1 order of magnitude
smaller—40 and 42 for the DFTB3-D3H4X and PM6-D3H4X
levels, respectively (Figure 1A).

The number of HFPs for individual PL complexes (Figure 1B
and Table S2) differed markedly with respect to the ligand
charge: in the case of the neutral ligands (Figure 1B, left), they
were by 1 order of magnitude smaller than that for the charged

DOI: 10.1021/acsomega.7b00503
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Table 1. Summary of the 17 PL Complexes Studied

PDB code  resolution (A) protein name class ligand charge  rotatable bonds in ligand
2FVD 1.8 CDK2 transferase (E.C.2) 0 6
10GS 22 glutathione S-transferase -1 13
3PE2 1.9 casein kinase Ila -1 4
3GCU 2.1 mitogen-activated protein kinase 14 0 6
20BF 23 phenylethanolamine N-methyltransferase +1 4
3JVS 1.9 checkpoint kinase 1 -1 5
3GNW 2.4 hepatitis C virus NS5B RNA-dependent RNA polymerase 0 5
2CET 1.9 P-glucosidase A hydrolase (E.C.3) +1 4
4GID 2.0 P-secretase 1 +1 16
2ZX6 2.4 a-L-fucosidase +1 4
3NOX 23 dipeptidyl peptidase 4 +1 3
2VOT 1.9 f-mannosidase +1 4
2XB8 2.4 3-dehydroquinate dehydratase Iyase (E.C.4) -1 4
2VW5 1.9 heat shock protein Hsp82 chaperone 0 3
2YKI 1.6 heat shock protein Hsp90-a 0 3
2P4Y 22 peroxisome proliferator-activated receptor y nuclear receptor -1 9
3GoW 1.9 androgen receptor 0 2

ones (Figure 1B, right). For SQM/COSMO at the PM6-D3H4X
and DFTB3-D3H4X levels, the numbers of HFPs for neutral
ligands were single-digit values (1 and 2, respectively). The
classical SFs performed worse, with the number of HFPs ranging
from 18 to 85 for neutral ligands (Figure 1B, left and Table S2).
The complex with the largest number of HFPs was the RNA-
dependent RNA polymerase/ligand complex (3GNW) with 71,
28, and 14 HFPs calculated with AutoDock4, UCSF Dock, and
AutoDock Vina, respectively. A large number of HFPs (40) was
also observed for the cyclin-dependent kinase 2 (CDK2)/ligand
complex (2FVD) for Glide XP (Table S2).

The results show that the classical SFs had larger troubles in
identifying the native binding poses for charged ligands (for the
classical SFs, more than 90% of HFPs were found for charged
ligands). The largest number of HFPs (140) was found with
Glide XP for the a-L-fucosidase (2ZX6) PL complex, which had a
positively charged ligand. For UCSF Dock, four systems, 2P4Y,
4GID, 2VOT, and 3NOX, yielded in total 403 HFPs, which is
70% of HFPs for the charged ligands in that method (577; Table
$2). In contrast, the number of HFPs for the charged ligands for
the SQM/COSMO was in total 38 and 41 for DFTB3-D3H4X
and PM6-D3H4X, respectively. This is considerably lower than
the classical SFs (193—577 HFPs) (Table S2). For SQM/
COSMO at the DFTB3-D3H4X level, the largest number of
HFPs was 20 and 8 for 2P4Y and 3NOX, respectively. Also, PM6-
D3H4X/COSMO had some troubles with these systems (5 and
10 HFPs, respectively). In both 2P4Y and 3NOX complexes, the
HEFP poses have the ligand cores placed at very similar positions
as the crystal pose, whereas moieties sticking out to the solvent
(the benzisoxazol and morpholino groups, respectively) had
fewer noncovalent interactions with the protein. This can be one
reason why poses with higher RMSD could score well. Other
reasons can be some of the approximations embedded in our
protocol for speed, such as the neglected terms in the SQM/
COSMO SF (change of conformational energy, entropy) or
explicit water molecules, which may need to be included in some
PL systems for reliable description of the energetics.*”"'

B CONCLUSIONS

The sampling (docking) power, that is, the ability to recognize a
ligand native pose in cognate PL docking, of two variants of
quantum-mechanics-based SQM/COSMO SFs is tested here on
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17 PL systems from five diverse protein families carefully selected
for physics-based SFs. For comparison, four standard SFs—
Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock, are
used. The SQM/COSMO SFs at the PM6-D3H4X and DFTB3-
D3H4X levels markedly outperform the standard SFs as judged
by the number of HFP poses. The time requirements for the
SQM/COSMO SF (Table S3) are higher than those for classical
SFs, but given the supercomputer power, thousands of docking
poses can be evaluated in a reasonable time. The results of the
freely available SQM/COSMO SFs give promise of generality,
and after comprehensive large-scale testing in the near future, this
method could serve as a useful tool in structure-based drug
design and reference for SF development.

B METHODS

Data Set. QM-based interaction energy calculations require
sensible geometries and, therefore, we needed good-quality
structures of PL complexes. The crystallographic structures
should have fair resolution (<2.5 A) with fully resolved electron
density for the entire ligand and surrounding binding site
residues. These criteria are fulfilled bzl the docking/scoring
benchmark set PDBbind core set.”*”** In our study, 17 PL
complexes (Figure 2 and Table 1) were used with targets from
diverse protein families: three enzyme classes (transferase,
hydrolase, and lyase), chaperone, and nuclear receptor (Table
1). The ligand structures are shown in Figure 2.

Docking Poses. Ligand poses obtained by seven commonly
used docking programs were collected from previously published
work." These programs were AutoDock (version 4.2.6),%°
AutoDock Vina (version 1.1.2),°" LeDock (version 1.0),%
UCSF Dock (version 6.7),** Glide SP (version 67011),> Glide
XP (version 67011),°° and Surflex Dock (version
2.706.13302).°* For each target, the ligand poses were pooled,
which amounted to approximately 350 poses per target. To
reduce the redundancy, all poses per target were clustered using
the “cluster _conformer” script in the Schrédinger suite”® with an
RMSD cutoff of 0.5 A. The number of poses was thus reduced to
approximately 250 poses per PL system. Each ligand pose, as well
as X-ray reference geometry, was scored “in-place” using four
classical SFs (AutoDock,*® AutoDock Vina,”” UCSF Dock,”* and
Glide XP**) and compared to that of two variants of SQM/
COSMO SFs, see below.™*

DOI: 10.1021/acsomega.7b00503
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Protein and Ligand Preparation. Protein Structure
Preparation. Following the standard virtual screening protocol,*
all the crystal waters were removed from the PL complexes. As
noted previously,” physics-based SFs require special care in
preparing the PL structures. For all proteins, which were not
deposited as monomers, chain A was used for protein
preparation except 10GS and 2XB8 where the dimer interface
makes important contributions to the binding. We used the LEaP
program, which is part of the AMBER14 suite,*’ to protonate the
proteins. The protonation state of histidine residues was assigned
manually on the basis of hydrogen-bonding patterns. Cysteine
disulfide bonds were assigned manually on the basis of the
sulfur—sulfur distance. In the case of the 3PE2 complex, the B
conformation of M163 was used because it forms interactions
with the ligand. Hydrogen atom positions in PL complexes were
relaxed by the simulated annealing protocol using short
molecular dynamics (MD) (for details see Supporting
Information).

Ligand Preparation. The protonation states of the ligands
were carefully checked by pK, calculations at pH 7 using
Schrodinger “Propka”.” The collected docking poses from seven
different programs had different output file formats. Each ligand
was made into one common MOL2 file format without any
changes in X, Y, and Z coordinates. Partial charges were derived
at the AM1-BCC level using RESP.”"~%

RMSD Measurements. RMSD values of all the ligand poses
were calculated with respect to the corresponding X-ray
geometry of the ligand (without any further optimization) with
the “heavy atom” option using the “rmsd.py” script by
Schrédinger.

Scoring. SQM/COSMO SFs. All of the docked PL complexes
with close contacts (cutoff of 1.5 A) between the protein and the
ligand were relaxed by short AMBER/GB optimization as in
previous studies.”> Next, optimal hydrogen positions were
localized in each complex using a short MDs run using
AMBER/GB as in our previous studies.’* The SQM/COSMO
score is a sum of AE;;, and AAG,, terms. For speed-up and
without compromising the reliability,”® the former term was
calculated on large parts of the protein (typically the ligand plus
10 A protein surroundings) using two approaches: (i) the
corrected PM6-D3H4X* and (ii) DFTB3-D3H4X method, a
third-order DETB’"”" with the 30B parameter set’””” and the
latest version of the D3H4X corrections for noncovalent
interactions.”* The solvation free energy was calculated on the
same truncated system as above using a COSMO implicit solvent
model at the PM6 level."’

Glide XP Score. All scoring calculations were performed with
Glide XP** and run in the extra precision (XP) workflow
framework. Docking grids were generated by Glide using the
cocrystallized ligand at the center of the grid box. The
compounds were scored with the option “score in place only”.

AutoDock4 and AutoDock Vina. For both AutoDock4™® and
AutoDock Vina,”’ the centers of grid boxes were arranged
according to the centers of the crystal ligand poses. The grid box
sizes were adjusted to make scoring possible for all combinations
of ligands and conformations. AM1-BCC RESP partial charges
were used.

UCSF DOCK. The grid spacing was 0.3 A. The cutoff for
nonbonded interactions was not used. We used AMBER
parameters. For ligands, we used AM1-BCC RESP partial atomic
charges.

Score Scaling. The scores of all the poses of the 17 PL
complexes obtained by the 6 SFs were transformed into relative
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numbers with respect to the score of the crystal pose and
normalized as done preﬁously.23’52
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Ranking Power of the SQM/COSMO Scoring Function on
Carbonic Anhydrase ll-Inhibitor Complexes

Adam Pecina®,” Jifi Brynda®,** Luka$ Vrzal,”' Ramachandran Gnanasekaran,
™ Saltuk M. Eyrilmez,™ 9 Jan Rezac e Martin Lepsik,™
°I Pavel Hobza,™ ¥ Pavel Majer,”

Magdalena Horej
Pavlina Rezacova,®
Jindfich Fanfrllk*[a]

Accurate prediction of protein-ligand binding affinities is es-
sential for hit-to-lead optimization and virtual screening. The
reliability of scoring functions can be improved by including
quantum effects. Here, we demonstrate the ranking power of
the semiempirical quantum mechanics (SQM)/implicit solvent
(COSMO) scoring function by using a challenging set of 10 in-
hibitors binding to carbonic anhydrase Il through Zn’* in the
active site. This new dataset consists of the high-resolution
(1.1-1.4 A) crystal structures and experimentally determined in-
hibitory constant (K) values. It allows for evaluation of the

1. Introduction

The ultimate goal of computational drug design is to accurate-
ly predict the binding affinities of ligands to their targets.
Structure-based approaches traditionally employ docking/scor-
ing methodology but molecular-dynamics approaches have
been increasingly successful. Scoring functions (SFs) have cer-
tain requirements for reliability and speed."’ The approxima-
tions used in physics-based scoring limit accuracy. Reliable pre-
diction of protein-ligand (P-L) binding affinities depends on
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common approximations, such as representing the solvent im-
plicitly or by using a single target conformation combined
with a set of ligand docking poses. SQM/COSMO attained a
good correlation of R? of 0.56-0.77 with the experimental in-
hibitory activities, benefiting from careful handling of both
noncovalent interactions (e.g. charge transfer) and solvation.
This proof-of-concept study of SQM/COSMO ranking for metal-
loprotein-ligand systems demonstrates its potential for hit-to-
lead applications.

accurate description of noncovalent interactions, as well as
other factors.”™

Quantum mechanics (QM) approaches can accurately de-
scribe noncovalent interactions. QM qualitatively and quantita-
tively describes quantum phenomena occurring in P-L binding,
such as charge transfer in metalloprotein binding,”*® halogen
(X)-bonding,” and covalent bond formation."” The high com-
putational requirements of QM descriptions can be reduced by
using linear-scaling semiempirical QM (SQM) methods to
handle systems up to 10,000 atoms."" The quality of original
SQM methods (such as PM6) was low, and thus we developed
transferable corrections for dispersion (D), hydrogen (H)-bond-
ing, and X-bonding."” Combining these corrections with PM6
or the more advanced density-functional tight-binding (DFTB3)
method yields the PM6-D3H4X and DFTB3-D3H4X methods,
which give highly accurate descriptions of noncovalent interac-
tions comparable to very demanding “gold standard” QM
methods.'”? PM6-D3H4X formed the core of SQM-based
SEM M designed as a sum of several terms of thought decom-
position of drug binding, including the gas-phase interaction
energy (AE,,), changes in the solvation free energy upon com-
plex formation (AAG,,), and the conformational “free” energy
change upon complex formation (AG’ ). P-L complexes
are optimized in an aqueous environment prior to scoring. The
full SQM-based SF has already been successfully applied for
analysis of small molecule series inhibiting various enzyme
classes (oxidoreductases, proteases, and kinases).!* ™!

We have recently simplified and accelerated the SQM-based
SF by employing only the two dominant terms, AE, and
AAG,,, and neglecting SQM optimization® This novel

873 © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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scheme, called the SQM/COSMO SF, is by two order of magni-
tude faster than the full version of the SQM-based SF. The time
requirements were thus reduced from days to tens of minutes,
which makes the SQM/COSMO SF applicable to drug design
even in an industrial context. It was demonstrated that the
SQM/COSMO SF outperformed standard SFs at the PM6-
D3H4X and DFTB3-D3H4X (for Zinc metalloproteins) levels in
identifying the native binding pose,®”'® which is a critical pre-
requisite for affinity estimation in physics-based scoring."”'®
However, it was not clear whether the simplified SQM/COSMO
SF could reliably estimate P-L binding affinities and provide
the valuable ranking for an inhibitor series.

In the present study, we tested the ranking power of the
SQM/COSMO SF at the DFTB3-D3H4X level-specifically, its abili-
ty to reliably rank a series of structurally similar carbonic anhy-
drase Il (CAll) inhibitors, an important task during the hit-to-
lead development phase-and compared it to those of widely
used classical SFs (GOLD, DOCK 6, AutoDock Vina, Auto-
dock4)'*? and AMBER molecular-mechanics (MM) force
field.®” Inhibition of CAll, a zinc metalloenzyme essential for
maintaining general acid-base equilibrium, has been studied
extensively,”*>" Here, we compared virtual scoring results with
experimentally determined inhibition constants (K) and high-
resolution crystal structures of CAll-inhibitor complexes for 10
compounds containing a benzenesulfonamide moiety.

2. Results and Discussion
2.1. Compounds

From the ZINC database,®" we selected 10 small molecules
with a benzenesulfonamide moiety, known to inhibit CAI|,?*3”
and determined their ability to inhibit recombinant CAIl using
a standard assay (Figure 1).*¥ The compounds were ordered
and numbered according to the length of the extension of the
benzenesulfonamide core. The molecular mass and octanol-
water partition coefficient (logP,,) of the ligands ranged from
157 to 391 Da and 0.62 to 3.29, respectively (Table S1 in the
Supporting Information). The K, values of the ligands spanned
three orders of magnitude, ranging from 416 nm for the basic
scaffold (1) to 3 nm (6), and were not correlated to either the
size or the lipophilicity of the molecules (R* of 0.19 and 0.0,
respectively; data in Table S1).

2.2, Crystal Structures

All compounds were co-crystallized with CAIl. Structures were
determined at 1.1-1.4 A resolution (X-ray statistics are given in
Table S2). The compounds were modeled into well-defined
electron density within the active site. The high quality of the
structures allowed us to interpret electron density maps reveal-
ing two alternative inhibitor conformations (for 4, 5, 7, 8, and
10). These inhibitors interact with CAll through the deeply
buried sulfonamide group, which establishes charged/polar in-
teractions with Zn’" and residues distributed at the bottom of
the active site (Figure 2A). The ionized amine (-NH") of the sul-
fonamide coordinates Zn’* at a distance of 2.0 A and forms an
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Figure 1. Benzenesulfonamide-containing CAll inhibitors and experimentally
determined inhibition constants (Ki).

Figure 2. Binding mode of inhibitors in the CAIll active site. The solvent ac-
cessible surface of the protein is colored by electrostatic potential; interact-
ing residues are highlighted in sticks and labeled. (A) Inhibitors 6, 9, and 10
interacting with the hydrophobic pocket are shown as sticks with carbon
atoms colored magenta for 6, yellow for 9, and green for 10 (two alternative
conformations are shown). (B) Inhibitors 3 and 8 interacting with the hydro-
philic pocket are shown as sticks with carbon atoms colored green for 3
(one conformation is shown for clarity) and magenta for 8 (two alternative
conformations are shown).

H-bond with the hydroxyl group of the Thr199 side chain. One
O atom of the sulfonamide moiety forms an H-bond with the
backbone amine of Thr199. Additionally, the inhibitors interact
with residues in the pockets at the active site entrance. Most
interact with the hydrophobic pocket formed by Phel31,
Val135, Leu198, Pro200, and Leu204 (Figure 2A). The excep-
tions are 3 and 8, which interact with the hydrophilic pocket
formed by Trp5, Tyr7, Asn62, Asn67, His64, and Thr200 (Fig-
ure 2B). The position of the benzenesulfonamide moiety is
conserved for all inhibitors except 3, for which this ring is ro-
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tated by roughly 60° due to a substituent in the ortho position
(Figure 2B).

2.3. Scoring

For computational modeling, we scored the crystal structures
of the CAll-inhibitor complexes with the SQM/COSMO SF at
the DFTB3-D3H4X level, classical SFs (GOLD, DOCK 6, AutoDock
Vina, Autodock4) and AMBER MM force field coupled with dif-
ferent implicit solvent models (AMBER*™'/GB, AMBER""/GB, AM-
BER"F/PB, AMBER""/COSMO, see Methods). Using information
from the structures (binding mode, position of active-site
waters, protein conformation), we obtained a reasonable corre-
lation between the SQM/COSMO scores and experimental
binding data (R? of 0.69, predictive index PI** of 0.81; see Fig-
ures 3 and Graphs S1 and S2). The other SFs had much worse
or no correlation with the experimental data, with the best re-
sults found for AutoDock Vina (R* of 0.39, Pl of 0.67), DOCK 6
(R’ of 0.38, Pl of 0.50) and AMBER"/COSMO (R? of 0.31, Pl of
0.45). Poor correlation was obtained with the AMBER"'/GB,
AMBER"/GB and AMBER"/PB. This may be due to the missing
description of the charge transfer between the ligand and the
metal ion in MM in this difficult case. MM based SFs might
thus be expected to give better results for other targets.

Scores obtained on this series of crystal structures show the
performance limit of SFs in the “single-structure approach,”
that is, without sampling P-L conformations. It should be
noted however that it is not common scenario for a drug
design project to have crystal structures of all the compounds
in complex with the target. In order to follow a more realistic
scenario, such as the standard “implicit solvent” approximation,
we omitted crystal waters in scoring. The correlation with the
experimental binding data decreased with the exception of
AMBER"/PB (R? of 0.28, Pl of 0.60) and AMBER"*/COSMO (R? of
0.51, Pl of 0.67) SFs. The correlation of AMBER"/COSMO was
even comparable to SQM/COSMO, which again, yielded the
best results (R? of 0.58 and Pl of 0.76). It distinguished strong
(inhibitors with K; ranging from 2.8 to 13.5 nm had scores rang-
ing from —46.3 to —39.0 kcalmol™") from weaker binders (K;
ranging from 33.9 to 415.6nm and scores from —34.9 to
—29.6 kcalmol "), while the remaining SFs did not show corre-
lation (max. R? of 0.19 and PI of 0.34).

Subsequently, we used a single protein conformation from
the CAII-1 structure to score the other inhibitors and test the
approximations in the “rigid protein conformation” approach.
The binding poses were aligned to the CAll-1 complex, and ex-
plicit waters were not considered. The correlation with the ex-
perimental data was not considerably worse for the SQM/
COSMO SF (R? of 0.56 and Pl of 0.64), and its ability to distin-
guish between strong and weak binders was preserved. The
low correlation of AMBER""/COSMO (R? of 0.18, Pl of 0.48) was
caused by the low score of 6, that is, omitting this data point
resulted in R’/PI of 0.44/0.62. These results may be due in part
to the relatively well-conserved geometry of the CAIll binding
site. Obtaining correlation without considering explicit waters
does not contradict previous findings that waters are impor-
tant in P-L binding.”'**¥ Rather, it demonstrates that the im-
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Figure 3. A) Correlation between experimental and calculated binding data
expressed by coefficient of determination (R?) and predictive index (P).

B) SQM/COSMQO, DOCK 6, and Vina scores plotted against experimental bind-
ing free energy values. a) Ten crystal structures used, b) crystal water mole-
cules not considered, and c) single crystal conformation used. Energies in
kcalmol .

plicit COSMO model can capture some of these effects in
some P-L systems. The correlation of the classical SFs re-
mained low. Interestingly, the “single protein conformation”
approximation improved the DOCK 6 results. However, the RY/
Pl of 0.33/0.46 for DOCK 6 was mainly due to the very low
score of 10 (omitting this data point resulted in R*/PI of 0.18/
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0.32), which was caused by a clash between the H atoms of 10
and Phe131. Notably, the clash introduced due to the soft re-
pulsive potential of the docking function was eliminated
during the H optimization step, which is present in SQM/
COSMO and AMBER scoring.®

Finally, to simulate a real-world scenario, the performance of
the SQM/COSMO was tested on docked poses (using DOCK 6)
of all the inhibitors into the single CAll conformation (taken
from the CAIl-1 crystal). The generated poses were rescored by
SQM/COSMO SF and the most negative scores were further
used. The comparison of obtained scores for docked poses
and 10 crystal structures confirmed the ability of the SQM/
COSMO SF to identify the X-ray pose,®”'? that is, crystal struc-
tures had the most negative scores in all the cases (Figure 4).
Importantly, the docked poses did not worsen the correlation
with the experimental binding data. The obtained correlation
(R*/Pl of 0.77/0.92) was even slightly better than that for the
crystal structures. This might be due to error cancelation on
consistently prepared docked poses. However, this effect
should not be overestimated, for example, DOCK 6 scores of
the docked poses did not have a better correlation with the
experimental binding data (R’/P! of 0.10/0.18).

3. Conclusions

We present the ranking power of SQM/COSMO scoring func-
tion that captures quantum effects in protein-ligand binding.
We designed a challenging set of 10 inhibitors of carbonic an-
hydrase Il binding through Zn?*, determined their inhibitory
constants (K) and high-resolution (1.1-1.4 A) crystal structures
which allowed us to assess the effects of using implicit solvent
models, a single protein conformation with a set of docked
ligand poses. The standard scoring functions (GOLD, AMBER/
GB, AMBER/PB, DOCK 6, Vina, Autodock4) did not correlate
with the experimental binding data (R*<0.39). In contrast,
SQM/COSMO provided a fair correlation (R* of 0.56-0.77). This
proof-of-concept study demonstrates the advantages of SQM/
COSMO ranking for zinc metalloprotein inhibitors. A large-scale
testing on diverse protein-ligands complexes will show wheth-
er the increased computational cost of SOM/COSMO scoring
can be outweighed by its benefits.

Experimental Section
Protein Preparation

Recombinant CAIl was expressed in E.coli BL21(DE3) and purified
as described by Pinard etal®! Protein was stored in 25 mm
NaH,PO,, pH 6.5, 100 mm NaCl and used in inhibition assays and
crystallization experiments.

CAll Inhibition Assay

An Applied Photophysics stopped-flow instrument was used to
assess CAll-catalyzed CO, hydration activity in the presence of in-
hibitors. Phenol red at a concentration of 0.1 mm was used as a pH
indicator, with an absorbance maximum of 557 nm. Reactions were
performed at 298K temperature in 20 mm HEPES, pH 7.5, contain-
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Figure 4. A) RMSD and SQM/COSMO scores for docked poses, and SQM/
COSMO scores for crystal structures. B) SQM/COSMO obtained on DOCK 6
poses plotted against experimental binding free energy values. Distances in
A and energies in kcalmol ™.

ing 20 mm Na,SO,. Rates of the CAll-catalyzed CO, hydration reac-
tion were followed for a period of 30 s; the CO, concentration was
8.5 mm. For each inhibitor, at least three traces of the initial 5-10%
of the reaction were used to determine the initial velocity. The un-
catalyzed rates were determined in the same manner and subtract-
ed from the total observed rates. Stock solutions of inhibitor
(30 mm) were prepared in dimethylsulfoxide (DMSO), and dilutions
up to 5 nm were prepared in 20 mm HEPES, pH 7.5, 20 mm Na,SO.,.
Inhibitor and enzyme solutions were preincubated for 5 min at
298K temperature prior to substrate addition to allow for forma-
tion of the E-I complex. The inhibition constants (Table S1) were
obtained by nonlinear least-squares methods using EXCEL spread-
sheets.
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Protein Crystallization and X-ray Data Collection

Complexes of recombinant CAll and ligands were prepared by ad-
dition of a 2-fold molar excess of inhibitor (dissolved in pure
DMS0) to 24 mgmL™' protein solution in 50 mm Tris, pH 7.8. The
best crystals were prepared by the vapor-diffusion hanging drop
method at 291K using a precipitation solution containing 1.6 m
sodium citrate, 50 mm Tris-HCl, pH 7.8. Drops containing 2 ul com-
plex solution and 1 pl precipitant solution were equilibrated over
reservoirs containing 1 mL precipitant solution. The final DMSO
concentration in the drop did not exceed 5% (v/v). Crystals suita-
ble for X-ray measurement typically grew within 1-2 weeks.

Before data collection, the crystals were soaked for 5-10s in a re-
servoir solution supplemented with 20% (v/v) sucrose and stored
in liquid N,. Diffraction data at 100 K were collected on BL14.1 op-
erated by the Helmholtz-Zentrum Berlin (HZB) at the BESSY Il elec-
tron storage ring (Berlin-Adlershof, Germany).*® Diffraction data
were processed using the XDS suite of programs.””* Crystal pa-
rameters and data collection statistics are summarized in Table S1.

Structure Determination, Refinement, and Analyses

Crystal structures were determined by the difference Fourier tech-
nique using the coordinates of the CAIl structure (PDB entry 3
PO6)5¥ as a model. Atomic coordinates of inhibitor molecules were
generated by quantum mechanical (QM) optimizations in the Tur-
bomole package™ using the density functional theory (DFT)
method with the B-LYP functional and the SVP basis set, augment-
ed with empirical dispersion correction.*"! The geometric libraries
for the inhibitors were generated using the Libcheck program.”?
The Coot program™! was used for inhibitor fitting, model rebuild-
ing, and addition of water molecules. Refinement was carried out
with Refmac5,"*" with roughly 1,000 reflections reserved for cross-
validation.

The structures were first refined with isotropic atomic displace-
ment parameters (ADPs). After adding solvent atoms and zinc ions,
building inhibitor molecules in the active site, and determining
several alternate conformations for a number of residues, aniso-
tropic ADPs were refined for nearly all atoms (with the exception
of spatially overlapping atoms in segments with alternate confor-
mations; additionally, oxygen atoms of water molecules with an
unrealistic ratio of ellipsoid axes were refined with isotropic ADPs)
including atoms in the inhibitor molecules. The structure of CAll in
complex with 9 was refined with isotropic ADPs using diffraction
data to a resolution of 1.4 A. The quality of crystallographic models
was assessed with MolProbity.*” The final refinement statistics are
summarized in Table S2. All figures representing structures were
created using PyMOL Atomic coordinates and structure factors
for the crystal structures were deposited in the PDB with accession
codes specified in Table S2.

Computational Section
Preparation of Proteins

Ten crystal structures of CAll in complex with sulfonamide-based li-
gands were determined. Computational models were prepared ac-
cording to the following procedure. Only A conformations of side
chains were considered. Hydrogens for the proteins were added
using the Reduce™” and LEaP"“*® modules in the AMBER10 pack-
age!” The protonation states of individual histidines were as-
signed based on visual inspection of their surroundings. The pro-
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tein N-terminus and all lysines and arginines were considered posi-
tively charged and the C-terminus and all glutamates and aspar-
tates were considered negatively charged to reflect the predomi-
nant state at pH 7. Using information from the crystal structures,
the important water molecules in the binding cavities (bridging
water molecules or water molecules within the water network be-
tween the ligand and the protein) were identified and retained.
The total number of such waters ranged from 15 to 21 molecules.
One water molecule bridging the inhibitors and CAll residues Tyr7,
Glu106, and Thr198 was retained to maintain the integrity of the
active site. Other waters were discarded for all further calculations.
The protein parameters were obtained from the ff03 force field,"®
and the positions of the added hydrogen atoms were relaxed in
vacuo using the FIRE algorithm followed by annealing (5 ps) from
1700 K to 0K using the Berendsen thermostat in the SANDER
module of the AMBER 10 package.””!

Preparation of Ligands

The inhibitors were protonated with the UCSF Chimera program.®”

The sulfamide moiety that binds to the Zn?" of CAll was modeled
in a deprotonated NH ™~ form.®"*? The force field parameters were
taken from GAFF"® and partial atomic charges were determined
by the RESP procedure at the AM1-BCC level >

Computational Methods

Physics-based scoring functions are sensitive to molecular details,
such as hydrogen bond orientation or geometric clashes. There-
fore, we automated the three-step geometry optimization of hy-
drogen atoms that are in contact with the ligand. For each pro-
tein-ligand complex, hydrogens were first optimized in GB with
the ff03 force field using the SD algorithm, then by simulated an-
nealing (3 ps) from 1700 K to 0 K using SANDER, and finally by op-
timization with the FIRE algorithm in AMBER10."* Consistently pre-
pared complexes were then rescored using the following set-ups:

The SQM/COSMO scoring function consists of two terms. The first
term is an interaction energy in the gas phase calculated with the
self-consistent charge density functional tight-binding scheme, in-
cluding the third-order terms and the 30B Slater-Koster parame-
ters, augmented with the dispersion, hydrogen-bonding and halo-
gen bonding corrections (SCC-DFTB3-D3H4X).”**! The second term
is the desolvation free energy change upon binding, evaluated at
the COSMO level®® from the PM6/COSMO calculation using
MOPAC with default parameters.[m To make the calculations faster,
we truncated the systems by defining a sphere of 12 A (roughly
3,000 atoms) around the aligned ligand poses as a region repre-
senting the binding site. This region was treated by SOM and was
the same for all complexes. We had previously demonstrated at
the PM6-D3H4 level on four P-L complexes that results obtained
on similarly truncated or full sized systems show nearly identical
behavior.

The AMBER™'/ GB, AMBER"™/ GB, AMBER"/ PB, AMBER™/ COSMO
scoring functions combine the ff03/GAFF“"** force fields with the
GB (IGB=1 option),*® PB*? and COSMO™® implicit solvent models.
GB and PB were evaluated by AMBER, while COSMO by PMé/
COSMO calculation in MOPAC. The AMBER*™" and AMBER™ stand
for the RESP procedure at AM1-BCC and HF/6-31G* levels, respec-
tively.

AutoDock4 (v.4.2.6)*" and AutoDock Vina 1.1.2:%! Grid box centers
were placed on the center of mass of the crystal ligand heavy
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atoms for each protein structure. The box size was chosen as 20 A.
Ligands and proteins were prepared using Ligand4.py and recep-
tor4.py preparation scripts in AutoDockTools-1.5.6%" with default
settings. In AutoDock4, we used 0.375 A grid point spacing and
AutoDock4,,, improved force field for zinc metalloproteins.?

GOLD: We used ChemPLP" GoldScore,” Chemscore,”" and
ASP?? scoring functions implemented in GOLD Suite v5.4.1 soft-
ware for rescoring. Binding site origins were defined as the same
coordinates for AutoDock Vina and AutoDock4. The radius was set
to 20 A. Zinc coordination geometries were set to tetrahedral for
Zn-containing proteins. All other settings were kept as software
defaults.

DOCK 6:% The size of the box was obtained by adding an extra
margin of 15 A in all 6 directions. A grid spacing of 0.3 A was used.
The cutoff for nonbonded interactions was not used. We used
AMBER parameters. For the ligands, we used AM1-BCC RESP partial
atomic charges. DOCK 6 was also used to generate docked poses.
For the SQM/COSMO rescoring, we considered five top-ranked
poses with RMSD of heavy atoms up to 2.5 A.
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Impressive Enrichment of Semiempirical Quantum
Mechanics-Based Scoring Function: HSP90 Protein with

4541 Inhibitors and Decoys

Saltuk M. Eyrilmez*,*® Cemal Képriiltioglu®," Jan Reza¢,” and Pavel Hobza

This paper describes the excellent performance of a newly
developed scoring function (SF), based on the semiempirical
QM (SQM) PM6-D3H4X method combined with the conductor-
like screening implicit solvent model (COSMO). The SQM/
COSMO, Amber/GB and nine widely used SFs have been
evaluated in terms of ranking power on the HSP90 protein with
72 biologically active compounds and 4469 structurally similar
decoys. Among conventional SFs, the highest early and overall
enrichment measured by EF, and AUC% obtained using single-
scoring-function ranking has been found for Glide SP and Gold-

1. Introduction

The determination of the structure and properties of protein-
ligand (P—-L) complexes is a key task in structure-based drug
design." To this end, numerous docking and scoring functions
(DF, SF) have been developed and tested. Besides classical
approach to docking/scoring based on empirical, knowledge- or
physics-based methods,”” a quantum mechanics (QM) approach
was pioneered by Merz et al.”! The former approaches, depend-
ent on the existence of a sufficiently broad training set, are
based on molecular mechanics (MM) methods (or their
simplification), whereas the latter approach utilises the ‘objec-
tive’ QM method. The main advantage of QM methods is the
fact that they cover quantum effects (e.g. charge transfer or o-
hole binding), which might play an important role in P—L
interactions. Due to the size of P—-L complexes, mostly semi-
empirical QM (SQM) methods as AM1,"” PM3,” PM6,” Pm7"
and DFTB3® are applied. None of these methods is, however,
directly investigation of noncovalent
complexes.”” For this purpose, correction terms ensuring the
proper description of dispersion, electrostatic and o-hole
interactions should be included. Throughout the present paper,
the advanced D3H4X"” correction term has been used in
combination with the PM6 method (PM6-D3H4X). The method
can be applied to extended P—L complexes with several
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ASP SFs, respectively (7, 75% and 3, 76%). The performance of
other standard SFs has not been satisfactory, mostly even
decreasing below random values. The SQM/COSMO SF, where
P—L structures were optimised at the advanced Amber level,
has resulted in a dramatic enrichment increase (47, 98%),
almost reaching the best possible receiver operator character-
istic (ROC) curve. The best SQOM frame thus inserts about seven
times more active compounds into the selected dataset than
the best standard SF.

thousand atoms because the PM6 method can be combined
with the MOZYME linear scaling algorithm implemented in
MOPAC."™ P—L complexes exist in a solvent environment, which
affects their structure and properties. To model the solvent, we
used the conductor-like screening implicit solvent model
(COSM0)." The binding free energy between the protein and
ligand in a solvent is approximated by the score [Eq. (1)]:

SCORE = AE,, + AAG,,, + AG" (P) + AGY

conf con

(L) +TAS, (1)

expressed as the sum of the gas-phase P—L interaction energy
(the first term), the change of solvation/desolvation free energy
upon complex formation (the second term), the change of the
conformation ‘free’ energies of the protein and ligand (the third
and fourth terms), and the entropy change upon binding (the
fifth term)."*' The first two terms, having the opposite sign
(the first term is always stabilising while the second one is
destabilising), are clearly dominant and SQM/COSMO-based SFs
are mostly based only on them.""”

The evaluation of the performance of DFs and SFs is mainly
based on the estimation of their sampling and ranking power,
where the first refers to the ability of SF to predict the position
of a native ligand correctly. We have recently investigated the
sampling power of several widely used classical SFs as well as
quantum mechanics-based SFs developed in our laboratory.
PM6 and DFTB3 SQM methods were combined with PM6/
COSMO, systematically based on the PM6 characteristics. Four!'®
and seventeen'” different P-L complexes were studied, and
the SQM/COSMO SFs clearly outperformed all classical SFs.
Slight improvement was achieved when the less empirical but
considerably more expensive DFTB3 method was applied."®2"
Ranking power, describing the ability of SF to rank different
ligands of the same target protein (based on binding affinities),
is a more difficult task. In the first study,”" we investigated a
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relatively easy case, where the structures of the complexes of
carbonic anhydrase Il with ten different ligands were known,
what reduces the problem to the determination of binding free
energy. In addition, in this case the SQM/COSMO SF provided
much better results than ten different classical SFs.

Structure-based virtual screening can only be successful if
the method can reliably predict the geometry of the P-L
complex (the binding mode) and the SF used provides reliable
ranking. It is now widely accepted that it is beyond the ability
of the currently used SFs to meet both requirements. As shown
above, the SQM/COSMO-based SF was more successful in both
these scenarios. The present study has applied this method-
ology (with further extensions) to a larger and more diverse set
of P-L complexes, the HSP90 protein and its about 5000
compounds from the DUD—E database. The HSP90 (heat shock
protein 90) is a protein that stabilises various growth
receptors”?? and some signalling molecules® required for the
survival of cancer cells.

The structures of P—L complexes were not known and were
thus determined by docking. The PM6/COSMO and Amber/GB
SFs and nine widely used classical SFs were evaluated in terms
of docking and scoring. The SQM/COSMO and Amber/GB SFs
were only applied for ranking, and the respective poses were
generated by different classical SFs. Since the biological
activities of all ligands and decoys are not known in detail and
are characterised only in terms ‘active’ and ‘inactive’, direct
correlation between activities and theoretical scores is imprac-
tical. It should be added here that even if ligand affinities are
known, correlation between them and calculated scores is
difficult, sometimes” even denoted as being ‘beyond the
current methods’. To describe the ability of the method to
distinguish between active and inactive ligands, we use the
enrichment factor, a quantity that distinguishes known ligands
from decoys.

1.1. Strategy

The knowledge of the native structure of the P—L complex is
crucial for the estimation of the biological activity of a ligand. If
the experimental structure of the P—L complex is missing, it is
possible to use the theoretical structure determined by the
gradient optimisation of binding free energy (Eq. 1). Such an
approach is not only CPU-time demanding but, and this is more
serious, it mostly leads to a local minimum at the free energy
landscape. There is an enormous number of the local minima
for P—L complexes, and it is clearly impractical to search the
whole landscape at the SQM level. We have chosen an
alternative route; DFs are used to generate a large number of
poses, which will be scored in the next step by means of SQM/
COSMO SF. We are aware that a reliable identification of a
native P—L pose with a single DF is a difficult task. Therefore, we
have intentionally used nine different DFs to increase the
possibility of finding a native binding pose. The disadvantage of
this procedure is clear - the SQM/COSMO calculations should
be performed for thousands of P—L structures. Therefore, the
SQM/COSMO SF should be computationally as efficient as
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possible. For that reason, we have introduced a semiempirical
quantum mechanics-based virtual screening frame, which
eliminates redundant poses and produces high-quality struc-
tures to increase the efficiency and applicability of demanding
PM6/COSMO calculations. The structures of P—L complexes
determined by DFs should be optimised at the molecular
mechanics level. This work has used the AMBER“** biomolecular
simulation package for geometry optimisations (MM,). To
increase the reliability of subsequent SQM scoring, restrained
AMBER optimisations have been applied as well. The bond
length and bond angle values have been taken from PM6
optimised compound structures (MM,). In the present study, we
have used test compounds taken from ‘A Database of Useful
Decoys: Enhanced’ (DUD-E)*? for the HSP90 target. This set
contains 4850 decoys, 25 experimental inactive compounds
with similar physical properties (e.g. molecular weight, calcu-
lated logP) but dissimilar 2-D topology, and 88 actives with
known experimental binding affinities. The ligands included 19
macrocycle-containing molecules. Since considerable effort
might be needed to rationalise the protocol, these compounds
were excluded from the actives in the first place.”® 406 of the
decoys were also not considered due to the computational
reasons.

1.2. Scoring

Within the present scoring framework, the score was approxi-
mated without the entropy change [Eq. (2)]:

SCORE = AE, + AAG,, + AGY (PTeo™) 1 AGY (L) @)

where the first, second and fourth terms were identical to these
in Equation (1), while in the third term only hydrogens were
considered in optimisation.

Three types of scoring were applied: MM scoring using
Amber/GB SF and two types of SOM scoring based on SQM/
COSMO SFs, denoted as SQM; and SQM,, where MM,, and MM,
optimised structures were utilised.

In the case of multiple protonation states, each state was
scored individually and the one with the minimum score was
used for enrichment analysis.

MM scoring: The scoring scheme shown in Equation (2) was
applied for MM scoring using the MM,, optimised structures of
the complex and ligands. Since the application of MM,
optimisations deteriorated the Amber energies, the MM scoring
over MM,-optimised structures was not performed.

SQM scoring: The key point for any SQM scoring in this
virtual screening study was to decrease the redundant poses
before processing them at the PM6/COSMO level. To achieve
this, we first applied RSMD clustering with a 1 A cut-off to
eliminate similar poses produced by MM, optimisations.
Representative poses were selected as the MM, minimum
complex structures. The complexes for the subsequent SQM
scoring were selected on the basis of MM,, optimisations (the
complexes within the 10 kcal/mol energy interval were taken
into consideration).

@ 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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Two types of SOM scoring (SQM, and SQM,) using the same
SQM/COSMO SF but different optimisation schemes, denoted as
MM, and MM, were considered. We have used Cuby4™®
software to automate our fragmentation, optimisation and
energy calculation protocols.

1.3. Analysis

For each of these SFs, the score of all ligand poses binding to
the respective target protein was calculated, ranked and
plotted. The performance of the scoring functions was
evaluated based on the analysis of the enrichment factor (EF)
and receiver operator characteristic (ROC) plots.”® The accuracy
of virtual screening was evaluated using EF. Calculated score
values were ranked, and EF was defined as [Eq. (3)]:

EFsubser = (ﬁgandse.‘ecred/Nsubser)/(ﬁgandromu‘/Nmraf) (3)

where ligand,,, is the number of known ligands with activity
against the target, N, is the number of all compounds in the
dataset, ligand.,...q is the number of found ligands in a given
subset, and N, is the total number of the compounds in the
subset. EF, .. provides information about the number of the
true positives among the decoys in the given subset in
comparison with a random selection.”” Generally, the top part
of the library of the ranked compounds was used for further
evaluation and was strongly dependent on the initial library
size. The size might range from 0.1% to 10% and it was
considered as 1% in the present study.””

ROC curves were obtained by plotting sensitivity (Se) and
specificity (Sp), where:

Sesubser = (“gandsele:red/’Ugandsroml) % 100

Spsubse!‘ = [(Decoysmmf - Decoysselecred)/Decoysmi‘uf] % 100

The ROC curves were plotted as (100%-Sp%) (i.e. % of
selected decoys)
compounds).?"

The AUC was defined as the area under a ROC curve. It is
simply the probability that a randomly chosen active has a

versus Se% (i.e. % of selected active

higher score than a randomly chosen inactive. In other words,
the AUC is the average of this property over all inactive
fractions.®

The results were also supported by the pROC AUC values,
which focus on early enrichment.??®¥ pROC AUC values for
random enrichment were determined as follows [Eq. (4)]:

1 1
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Table 1. The ROC enrichment factors (EF1), AUC (in%) and pROC AUC
obtained for single-docking-function ranking (DF).

DF EF1 AUC [%] pROC AUC
AD4 1 49 0.383
VINA 0 30 0.192
SMINA 0 34 0.224
GlideSP 7 75 0.880
GlideXP 4 71 0.730
ASP 3 76 0.787
Gscr 0 60 0.488
Cscr 0 34 0.270
PLP 1 51 0.383

2. Results and Discussion

Table 1 shows the performance of nine different SFs where a
single SF was used for both scoring and ranking. The analysis is
based on EF,, AUC and pROC AUC characteristics determined
for the average property over all inactive fractions.

Evidently, the results are not satisfactory, especially concern-
ing the early-stage enrichment (EF, values). The EF, values of six
out of nine SFs were equal to or below random values (EF,=1)
and only SP, XP and ASP SFs provided EF, above this limit. The
overall performance measured by AUC values was slightly
better - the AUC values of five SFs were below random values
(50%), whereas SP, XP, ASP as well as Gscr were above them,
while PLP equalled the random performance. The best among
the single-scoring-function ranking SFs were GlideSP, GlideXP
and ASP, having the highest EF,, AUC% and pROC AUC
characteristics (7, 75 %, 0.880; 4, 71%, 0.730 and 3, 76 %, 0.787).
Note that GlideSP exhibits higher early enrichment, which is
more important for drug-design purposes, while ASP has better
overall performance. The combined performance of all SFs was,
however, poor. In all the cases, the single-scoring-function
ranking SFs had been applied. It was thus necessary to decide
whether the problem originated in incorrect structures deter-
mined by docking or in the incorrect score determined by
ranking. The question was to be answered in the next step by a
combined study using different SFs for scoring and ranking. It is
known that rescoring with the different docking functions can
improve the enrichment significantly.®¥ Each scoring function
has been therefore sampled extensively to fill the active pocket
as complete as possible. We collected 100 poses from each
docking software. Comparing results presented in the Tables 1
and 2 we found that none of empirical functions (cf. Table 1)
could reach the respective results presented in the Table 2.

Table 2 summarises the enrichment where docking was
made by a single standard DF while ranking was performed by
MM, SQM, and SQM, SFs. A comparison with the corresponding
values from Table 1 clearly shows the dramatic improvement

Iim/(—logmx)d)( - ilim/(logx)dx when binding free energies (SCOREs) have been evaluated at
a0 g l0g104-0 g (4) the MM and both SQM levels. The SQM, results will be
— 0.4341im{X — XlogX}|Optla = 0.434 discussed first. All combinations of SQM, ranking with poses
a—0 generated by different DFs have provided the enrichment

values considerably above the random values. The highest early

and overall enrichment was obtained for Gscr, SMINA, AD4,

GlideSP and PLP structures. Considering the pROC AUC values
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Table 2. The ROC enrichment factors (EF,), AUC (in%) and pROC AUC
obtained for SQM,//DF (a combination of scoring and docking; the P—L
structures were optimised with the MM, method), SQM,//DF (the P—L
structures were optimised with the MM,, method) and MM//SF.
SF//DF EF1 AUC [%] pROC AUC
SQM,//AD4 40 9N 2,104
SQM,//AD4 25 70 1.262
MM//AD4 15 86 1.304
SOM,/VINA 42 93 2,052
SQM,/IVINA 27 67 1.277
MM//VINA 13 83 1.208
SQM,//SMINA 37 93 1.997
SQOM,//SMINA 31 69 1.371
MM//SMINA 17 84 1.343
SQM,//SP 34 81 1.670
SQM,//SP 15 82 1.368
MM//SP 15 76 1.277
SQM,//XP 32 85 1.710
SQM,//XP 14 65 0.872
MM//XP 23 83 1.493
SQM,//ASP 3 93 1.877
SQM,//ASP 24 66 1.093
MM//ASP 18 91 1418
SQM,//Gscr 44 97 2329
SQM,//Gscr 3 74 1.350
MM//Gscr 14 920 1.352
SQM,//Cscr 29 89 1.757
SQM,//Cscr 19 62 0.880
MM//Cscr 14 82 1.229
SQOM,//PLP 31 95 2,096
SQM,//PLP 27 68 1.193
MM//PLP 3 88 1.333
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A similar dramatic increase was found for the early enrich-
ment, where five out of nine EF, values were higher than 31
(this value was not exceeded by any EF, for SQM, and MM) and
the highest EF, was detected for SQM.//Gscr (44), beside this,
pROC AUC value is five times better than the random. A
comparison of the entries in the Table 2 clearly shows that high
enrichment is only obtained if reliable binding modes are used.
Evidently, the poses generated by docking are not sufficiently
accurate and significant enrichment increase is only obtained
after their re-optimisation at the MM, level. The question arises
whether comparable results can be expected for other proteins
as well. The necessary condition for it is the generation of
reliable structures. There is no reason to expect that a DF that
has generated reliable structures for some protein will also
succeed for another one. To make the method more robust, it is
thus beneficial to use more DFs for the generation of ligand
poses. To test this approach, we have collected ligand poses
from all the DFs considered in the present paper; the
subsequent ranking was performed with SQM,, SQOM, and MM
SFs. The consideration of the poses from all DFs provided an
enrichment increase when SQM, and SQM, SFs were used (cf
Table 3). When SQM,, SQM, and MM methods were applied, the

the VINA DF shows a better performance than PLP even though
both DFs have similar EF, and AUC results. Glide SP exhibits the
best overall performance but low EF, values. On the other hand,
the pROC AUC result was the second best. The SP DF thus
provides early stage success as demonstrated by pROC AUC
value and the best overall performance (see AUC% value in the
Table 2). For drug discovery, as mentioned above, early
evaluation is more important; therefore, preference should be
given to SMINA, SP, Gscr and VINA DFs combined with SQM/
COSMO SF. Much better enrichment performed by combined
SQM, ranking and DF docking provides evidence that all
standard SFs have problems with the determination of binding
free energies while their geometries are reliable. Surprisingly
high enrichment, especially an overall one, was obtained when
MM SF was applied. The best results in the overall performance
were obtained with ASP and Gscr DFs. The very good perform-
ance of MM is promising for the future investigation of
extended P—L complexes, because MM is much less CPU-time
demanding. It should be noted that the SQM; results discussed
above were obtained with the P—L structures optimised with
the standard MM, method. On the other hand, the SQM, results
in Table 2 were obtained with the P—L structures optimised
with the MM, method. Evidently, this systematically resulted in
significantly higher enrichment. Considering the SQM, values,
only the Gscr structures provided AUC values higher than 70%.
When the SQM, values were considered, five of the SF
structures exceeded 90% limit and the PLP and Gscr values
even reached 95 and 97 %, respectively.

ChemPhysChem 2019, 20, 2759-2766  www.chemphyschem.org

Table 3. The ROC enrichment factors (EF,), AUC (in %) and pROC AUC
obtained for SQM,//ALL (a combination of scoring and docking; the P—L
geometries from all SFs were optimised with the MM, method), SQM,//ALL
(a combination of scoring and docking; the P-L geometries from all SFs
were optimised with the MM, method) and MM//ALL.

SF//DF EF1 AUC [%] pROC AUC
SQM.//ALL 47 98 2477
SQM,//ALL 32 75 1.426
MM//ALL 10 92 1.395

2762

AUC values reached 75%, 98% and 929%, respectively, and
highest enrichment was achieved when the SQM, method was
used. The highest AUC values obtained with the same methods
where only the structures generated by a single DF were used
equalled 74%, 97% and 91%, respectively. The EF, values for
SQM,, SQM, and MM methods (where the structures of all DFs
were used) amounted to 32, 47, 10, and, again, the highest EF,
was obtained for SQM,. The pROC AUC value is 2.477 which
means the performance is six times better than the random
case. When only the structures generated by a single DF were
used EF, equalled 31, 44 and 23, respectively. The consideration
of the structures from all DFs improved early and overall
enrichment for SQM; and SQM,, the effect was not dramatic.
We have seen a decline of EF, for MM but improved overall
performance. The reason for the decline might be due to the
energy ranking of all the structures generated by all DFs. The
above-mentioned results are valid for the present protein. For
different targets situation might be different and the use of
structures from more DFs is thus recommendable.

@ 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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3. Conclusions

The enrichment obtained with single-scoring-function ranking
was low for all nine conventional SFs. Several SFs provided
enrichment even below the random-value limit. Only four SFs
(SP, XP, ASP and Gscr) provided enrichment above random
values. Evidently, no single SF succeeds in both docking/scoring
and ranking.

The enrichment increased when SQM, SQM, and MM
ranking was determined for poses generated by standard SFs.
This gives evidence that standardly used SFs provide reliable
poses but fail for ranking. On the other hand, SQM,, SQM, as
well as MM SFs yield reliable ranking.

A significant enrichment increase was achieved when P—L
structure optimisation was performed within the SQM, frame.
The enrichment (AUC) obtained by five out of nine SFs
exceeded 90%, and the PLP and Gscr AUC values even reached
95% and 97 %. Impressive enrichment in terms of both EF, and
AUC resulted when the Gscr, AD4 and PLP structures were re-
optimised at the MM, level (44, 97 %, 2.329; 40, 91 %, 2.104 and
31, 95%, 2.096 respectively). Using the PM6é parameters in the
MM treatment improves the geometry of the ligand, what leads
to better geometries of the P-L complex and, consequently, to
higher enrichment. The consideration of all poses provided an
enrichment increase for SQM, and SQM, methods, EF,, AUC and
pROC AUC values rose to 32, 75%, 1.426 and 47, 98%, 2.477
respectively.

The overall enrichment after MM, application to P-L
structure optimisation was very close to the best ROC AUC
limits.

The standard approach to virtual screening is based on the
use of single-scoring-function ranking. The highest enrichment
in EF,, AUC and pROC AUC (7, 75%, 0.880 and 3, 76%,0.787
respectively) was obtained using the GlideSP and ASP SFs.
Passing from the best single-scoring-function ranking to the
advanced SQM treatment led to a dramatic increase. A
combination of the SOM SF with P—L optimisation using MM,
provided impressively high EF,, AUC and pROC AUC values (47,
98%, 2.477). The enrichment factor obtained included 34 (out
of 72) experimentally active structures in the subset. This means
that nearly 50% of actives are found in 1% of the whole
dataset. In other words, the present SQM, SF frame inserts
about seven times more active compounds into the selected
dataset and three times better pROC performance than the best
SF. This clearly demonstrates the impressive performance of the
SQM, frame in both early and overall enrichment. The values of
the overall enrichment are close to the best ROC curve. We are
certainly aware that all these findings are based on the
investigation of a single protein. Intensive work in our
laboratory is currently being performed for targets from other
protein families.

The above-mentioned findings clearly demonstrate the
advantage of using SQM SFs over the standard ones. We believe
that despite higher CPU demands, the wider application of SOM
SFs could be beneficial not only for structure-based drug design
but also for related applications.
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Figure 1 shows the visualisation of docking results using a
novel Post Dock tool® implemented in MOE Software.® Six (A,
C, D, E, F, G) out of nine DFs provided binding modes close to
the crystal pose. Their transparencies were high which means
the respective DFs provided correct poses with the worse score.
In another word, they are good in sampling but failed in
ranking. On the contrary, figures B, H and | demonstrated that
the individual DFs failed to generate the correct binding modes.
As it seen in the Figure 1J SQM provided less transparent yellow
colour which means that the binding mode totally matches
with the crystal pose. It implies that SQM SF was able to select
the crystal pose with the highest score. These results show that
increasing the number of poses for the individual DFs was
important for finding the crystal pose. For instance, in the case
of SQM SF (Figure 1)) the binding mode with the best score
fully agreed with the crystal pose while AD4 DF (Figure 1A)
found the best agreement with the crystal pose for pose
number 90 having the worse score. Evidently that the use of
SQM SF is required for obtaining both successful sampling and
ranking.

Computational Section

Compound Preparation

The compounds were downloaded in the SMILES format and
prepared using the LigPrep module with an Optimised Potentials
for Liquid Simulations (OPLS3e)"” force field. Their ionisation states
were generated at pH 7.042.0 using Epik® in LigPrep.*” Specific
chiralities were retrained during the ligand preparations. The
structures generated within the state penalty value of 0-1 were
saved for docking calculations.

Protein Preparation

The process of protein preparation requires special care in physics-
based SFs!™™ Protein has been downloaded from the Protein
Databank™*” with the 1UYG PDB code.*” We have decided to keep
three conserved water molecules (W2121, W2123 and W2236). To
implement the selection, we first aligned the PDB structures with
100% sequence similarity to 1UYG. According to the Ref.[42] we
selected the intersection set of the most favourable water
molecules (W1, W3,W4). Hydrogens of the protein were added by
using reduce program, which is part of the AMBER18 suite. The
protonation states of each histidine residue were assigned manually
based on hydrogen-bonding patterns. Hydrogen positions were
relaxed by the simulated annealing protocol using short molecular
dynamics (MD). The protocol includes the optimisation of hydro-
gens, annealing and optimisation in the solvent igb7“* model. The
MD protocol was the following: the initial temperatures were
assigned following Maxwell Boltzmann distribution to the target
temperature of 1000 K. They were kept at 1500 K for 1 ps and then
cooled down to 0K over 2ps. Optimisation was carried out
employing the Broyden-Fletcher-Goldfarb-Shanno algorithm using
a limited amount of computer memory with the igh7 solvent
model.
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Figure 1. Individual representation of RMSD vs Energy for docking and scoring results of 9 different DFs and the scoring result of SQM-based SF: A) AD4, B)
ASP, C) CSCR, D) GSCR, E) GlideSP, F) GlideXP, G) PLP, H) SMINA, I) VINA and J) represent the results of SQM. For these results, TUYF crystal ligand has been
used for the comparison in Post Dock.®® It displays an interactive pseudo-3D snapshot of multiple docked ligand poses such that both the docking poses and
docking scores are encoded visually for rapid assessment. The docking energies are represented by a transparency scale whereas the docking poses are
visually encoded by a colour scale. Reference ligand localization in the binding site is shown in green colour with the stick model. The poses from the docking
functions are shown in the surface model. The colours from the tinted yellow to the faint blue represent the RMSD values. Yellow colour corresponds to the
lowest RMSD and a blue colour corresponds to the highest RMSD. Regarding the opaqueness, the opaquest surface represents the lowest energy pose with a

better score and the score is getting worse when the transparency increase.

Dockings

We have examined the poses generated by nine docking functions:
Glide(SP,XP),""  AutoDock4,™ Vina,“? Smina*" and GOLD
software,”®” using ASP" GoldScore, " ChemPLP®? and
ChemScore." All hydrogens of the compounds and the receptor
were explicitly preserved during all docking calculations to make it
possible to see every possible interaction for different protonation
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states of the same molecule. We have changed the upper limit of
the pose production to 100 for all DFs while keeping other settings
as default. The centre coordinates of the grid were assigned as the
geometrical centre of crystal inhibitor and used for all docking
functions.

The grid centre was adjusted in MGLtools. In our grid box all the
possible interactions have been checked and presented. Based on
the xy,z centres 20 A* grid box covered all the poses. 20 A® grid
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box was prepared for AutoDock4, AutoDock Vina as well as SMINA.
Grid earch space size was specified in “grid points” (0.375
Angstrom), as in AutoDock 4, Docking receptor grid in Glide was
generated using the Glide Receptor Grid Generation module. A
cubic box of 20 A* was placed at the grid box centre. For Gold
dockings, Grid centre coordinates were used for binding site origin.
The radius value was defined as 12.4 A in order to produce the
same volume as the grid boxes for previous DFs.

Fragmentation

The fragmentation of the protein step was applied to reduce the
computational cost for demanding PM6/COSMO calculations for
the complex. For this reason, all docked pose coordinates were
gathered to generate a reference volume for the fragmentation.
The fragmented protein part (receptor) was defined as a selection
of protein residues within a 4 A distance from the reference
volume, truncated, and capped by using Cuby4. Hydrogen
sampling and optimisation processes were applied as explained in
the protein preparation section. MM,, and PM6/COSMO energies of
the receptor were noted for scoring calculations.

Scoring Preparation

We used ffPM3"* for protein, tip3p®” for water molecules, gaff2 for
compounds and the igb7 model for the solvation of AMBER
calculations. We assigned partial atomic charges by means of the
AM1-BCC*™ charge model implemented in antechamber.”® Individ-
ual input complex structures were generated from docked poses
and the receptor. The MM preparation of the complexes were
initiated as a 2 ps MD step and the optimisation of the ligand
hydrogen atoms and the surrounding H atoms of the receptor
within 4 A with respect to ligand heavy atoms. The hydrogen
sampling of the complex step was followed by another optimisa-
tion of all ligand atoms along with 4 A surrounding hydrogen
atoms of the receptor.

All compound conformations were also optimised by MM, and
MM, protocols and single-point PM6/COSMO energy calculations
were applied for further deformation penalty inclusion.
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