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Recyklace Fockových stav̊u na
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Abstrakt

Fockovy stavy diskrétńıch proměnných a stlačené stavy spojitých proměnných jsou
kvantové stavy využ́ıvané jako zdrojové stavy pro kvantovou fyziku. Ćılem je studovat
a navrhnout proveditelnou metodu recyklace mnoha kopíı neperfektńıch Fockových
stav̊u na stlačené stavy světla s využit́ım pouze lineárńı optiky a homodynńı detekce.
Speciálńı pozornost je věnována recyklaci kvantových ne-Gaussovských stav̊u s pozi-
tivńı Wignerovou funkćı na stlačené stavy. To otev́ırá směr kvantové recyklace i pro
širš́ı tř́ıdu zdrojových stav̊u, které i když nejsou aplikovatelné v určité úloze, mohou
být po recyklaci aplikované v jiné úloze.

Kĺıčová slova

Kvantové stlačeńı, Fock̊uv stav, Gaussovský stav, recyklace, Gaussovská operace,
Gaussovský filtr



Abstract

Both discrete-variable Fock states and continuous-variable squeezed states are basic
resources of quantum physics. The aim is to study and propose a feasible method of
a recycling of many copies imperfect Fock states to the quantum squeezing using only
linear optics and homodyne detection. In particular, the recycling of quantum non-
Gaussian states with positive Wigner function to the squeezed states will be addressed.
It also opens a direction of quantum recycling for a class of resource states, which are
not applicable for some task but, after the recycling, they still can be useful for another
task.
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Quantum squeezing, Fock state, Gaussian state, recycling, Gaussian operation,
Gaussian filter
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1 Introduction

Non-classical squeezed states are very important resources for quantum information pro-
cessing [1]. Their non-classicality is characterized by reduced noise in some observable
bellow threshold of vacuum noise. First experimental observation of squeezed states was
made in Refs. [2, 3]. Recently, squeezed states are key resource for continuous-variable
quantum information processing like: quantum metrology [4], continuous-variable quan-
tum teleportation [5], preparation of cluster states [6], quantum key distribution [7] and
hybrid approach to quantum information processing [8].

Squeezing is very sensitive to noise and can be very easily lost in a channel. Squeez-
ing distillation was developed to reverse the disturbing process and reach squeezing
again. Important fact is that squeezing cannot be distilled from Gaussian states [9].
Distillation from non-Gaussian states arising by amplitude fluctuations [10] and phase
fluctuation [11, 12] were studied. On the other hand, the squeezed states can be purified
by Gaussian operations based on linear optics and feedforward [13]. Squeezing distilla-
tion has purification effect as well [14]. Moreover, multi-copy distillation was introduced
to improve squeezing recovery [15]. Multi-copy distillation has also Gaussification effect
[16, 17] and provides harmonic mean of input state variances of observables [18].

An extension of the squeezing distillation is squeezing extraction [19]. Squeezing
extraction universally generates squeezing from general quantum states in contrast to
squeezing distillation obtaining squeezing from specific disturbed states which are orig-
inally squeezed. Universal multi-copy squeezing extraction based on multiple interfer-
ence and position measurement was introduced and analyzed in Ref. [19]. Interest-
ingly, extractable squeezing by universal multi-copy recycling is determined by relative
concavity of input state probability distribution of generalized coordinate in point of
global maximum. It is a method which exploits hidden features of only one variable
distribution of quantum states, therefore it advantageously does not require complete
knowledge of quantum state. The universal squeezing extraction was then applied to
various examples of non-Gaussian states.

If the squeezing extraction is applied to an imperfect version of another resource
states, for example imperfect single-photon states, we actually could recycle wasted
resource to another useful one. Highly non-classical single-photon states are another
very important resources for quantum processing. They have zero uncertainty in en-
ergy and their strong non-classicality is represented by negativity of Wigner function.
Single-photon states were detected at first in Refs. [20, 21] and their full tomography
was done in Ref. [22]. Single-photon states are important resource for many quantum
processing implementations like preparation of entanglement for qubits [23], quantum
key distribution [25, 24] and linear optical quantum computing [26]. Moreover, broad
scale of quantum states could be prepared from ideal single-photon states [27]. How-
ever, imperfect single-photon states are typically mixture of vacuum state and pure
single-photon state which appears by attenuation of original pure single photon. Highly
attenuated single-photon state loses its negativity but they are still non-classical [28].
Its non-classicality is now represented by non-Gaussian character which means that the
state is incompatible with mixture of Gaussian states [29, 30]. It is not clear whether
these imperfect states can be still recycle to useful states, for example squeezed states.
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Important no-go theorem is that portion of single photon in wasted single-photon
states cannot be increased by linear optics, any destructive measurement, post-selection
or feedforward [31]. Attenuated single-photon state in form η|1〉〈1| + (1 − η)|0〉〈0| is
considered where presence of higher Fock states than one is excluded since higher Fock
states can be eliminated. Imperfection of attenuated single-photon state is then de-
scribed by factor η representing the portion of single photon. This attenuation factor
cannot be increased if only linear optical components, any destructive measurements,
post-selection and feedforward are allowed and presence of higher Fock state compo-
nents in distilled state is forbidden [31]. Simultaneously, attenuated single-photon state
has positive Wigner function for η ≤ 0.5. As a result, wasted single-photon state with
positive Wigner function cannot be distilled to state with negative Wigner function.
Therefore, they might be useless for original purpose of single-photon states if it de-
pends on negativity of Wigner function. On the other hand, wasted single-photon state
with positive Wigner function can be used as input state for squeezing recycling where
its non-Gaussianity is enough to produce squeezing.

In this thesis, squeezing recycling from wasted single-photon state is studied in
detail. Novel non-universal approach is introduced to improve the universal squeezing
extraction [19]. Mainly, we focus on possibility to extract squeezing from states with
positive Wigner function. Fundamental questions arise: can squeezing be extracts from
arbitrary attenuated single-photon state and how much squeezing can be asymptotically
extracted for large number of input states? Remarkably, we will show that squeezing
can be extracted from arbitrary attenuated single-photon state. We will introduce
novel partially-universal method to estimate extractable squeezing from large number
of input states. This method extracts squeezing from relative concavity and newly
from relative steepness of input state probability distribution of generalized coordinate.
Moreover, we are involving recycling strategies to produce as high as possible squeezing
from pure single-photon state or as an extension from higher Fock states. Interesting
usage of recycling protocols can be producing squeezed states in ultraviolet region of
electromagnetic spectrum where standard sources of squeezing are not available but
still single-photon states can be produced [32, 33].

2



2 Theoretical background

2.1 Quantization of electromagnetic field

Quantization of electromagnetic field can be found comprehensively in Ref. [8]. For this
Thesis, we will only sketch a basic results to introduce a reader to the field. Vector
potential A, which is just ancillary observable in classical electrodynamics, has a crucial
role in discretization of electromagnetic field in quantum electrodynamics. Its quantum
version, vector potential operator Â of electromagnetic field in box of finite spatial
volume L3 can be expressed in quantized form

Â(r, t) =
∑
k

(
h̄

2ωkε0L3

)1/2

e(λ)
[
âk e

i(k·r−ωkt+φ) − â†k e
−i(k·r−ωkt+φ)

]
(1)

where the sum is over all modes in the box with wave vector k and angular frequency
ωk. Vector e(λ) is unit polarization vector, the index λ = 1, 2 is polarization index, ε0

is electric permittivity of free space and h̄ is Dirac constant. Dimensionless complex
constants in classic theory are here replaced by operators âk and â†k which represent

annihilation and creation operators satisfying [âk, â
†
k] = 1. Phase factor φ represents

phase with respect to reference phase. Electric intensity given as Ê = −∂Â
∂t

reads

Ê(r, t) = i
∑
k

(
h̄ωk

2ε0L3

)1/2

e(λ)
[
âk e

i(k·r−ωkt+φ) + â†k e
−i(k·r−ωkt+φ)

]
(2)

and Hamiltonian of electromagnetic field can be expressed as

Ĥ =
∑
k

h̄ωk

(
â†kâk +

1

2

)
, (3)

where N̂k = â†kâk is photon number operator of kth mode. The optical detectors are only
sensitive to electric field [34]. Electric intensity of kth mode with single polarization

Êk(r, t) = E0

[
âk e

i(k·r−ωkt+φ) + â†k e
−i(k·r−ωkt+φ)

]
(4)

can be expressed as

Êk(r, t) = E0 [x̂k cos (k · r− ωkt+ φ) + p̂k sin (k · r− ωkt+ φ)] , (5)

where constant E0 contains all the dimensional prefactors. In-phase quadrature x̂k =
â†k + âk and out-of-phase quadrature p̂k = i(â†k − âk) mathematically correspond to
position and momentum operator of mechanic oscillator. We use normalization for
which vacuum state |0〉 will exhibit variance in both quadratures equal to unity Vx =
Vp = 1. Dimensionless quadrature x̂ is proportional to real part of electric intensity and
dimensionless quadrature p̂ is proportional to the imaginary part of electric intensity.
Quadratures satisfy commutation relation

[x̂, p̂] = 2i. (6)
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Fluctuations of electric field can be directly measured by a homodyne detector [35]
which will be discussed in detail in Section 2.7.

Single mode of electromagnetic field is described by quantum state with density
matrix ρ̂. In Fock states representation, quantum state density matrix reads ρ̂ =∑

n,m cnm|n〉〈m| where |n〉 is Fock state and cnm are generally complex coefficients

which are real for m = n. Fock states are eigenstates of photon number operator N̂
satisfying relation

N̂ |n〉 = n|n〉 (7)

and forming the discrete basis. Quadratures mean values of the quantum state are
defined as

〈x〉 = Tr [ρ̂x̂] , 〈p〉 = Tr [ρ̂p̂] . (8)

Quadratures second statistical moments are then defined as

〈x2〉 = Tr
[
ρ̂x̂2
]
, 〈p2〉 = Tr

[
ρ̂p̂2
]

(9)

and variances then reads

Vx = 〈x2〉 − 〈x〉2, Vp = 〈p2〉 − 〈p〉2. (10)

Heisenberg uncertainty relations for optical quadratures reads

VxVp ≥ 1. (11)

Quadratures eigenstates |x〉 and |p〉 are infinitely squeezed in position and momen-
tum respectively and they have infinite energy. From this perspective, they are not
physical. Both sets of eigenstates form continuous bases {|x〉} and {|p〉} respectively.
Both bases are orthogonal hence 〈x′|x〉 = δ(x− x′) and 〈p′|p〉 = δ(p− p′). Quadrature
bases are coupled by Fourier transform

|p〉 =
1√
4π

∫ ∞
−∞

dx eipx/2|x〉 (12)

and overlap of |x〉 and |p〉 eigenstates reads

〈x|p〉 =
1√
4π

eipx/2. (13)

In next section, we will discuss Wigner function representation of quantum states.

2.2 Wigner function of quantum states

Wigner function or Wigner quasi-probability distribution [35] is continuous-variable
representation of density matrix ρ̂. Wigner quasi-probability distribution is defined as

W (x, p) =
1

2π

∫ ∞
−∞

dy〈x− y|ρ̂|x+ y〉eiyp (14)
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and it is a real function of expectation values of two complementary variables x̂ and
p̂. Wigner function is often used because it visualizes behavior in both complementary
quadratures at one time. It is called quasi-probability distribution because if Wigner
function is positive it can be interpret as probability distribution in phase space. On
the other hand, there can be states whose Wigner function attain negative values.
Negativity of Wigner function is a witness of high quantum non-classical character.
Probability distributions of quadratures can be easily computed from Wigner function
by relations

P (x) =

∫ ∞
−∞

dp W (x, p), P (p) =

∫ ∞
−∞

dx W (x, p). (15)

Mean values and variances can be computed as well by relations

〈x〉 = Tr [ρ̂x̂] =

∫ ∞
−∞

dp

∫ ∞
−∞

dx W (x, p)x,

Vx = Tr
[
ρ̂ (x̂− 〈x〉)2] =

∫ ∞
−∞

dp

∫ ∞
−∞

dx W (x, p) (x− 〈x〉)2 (16)

and for quadrature p̂ similarly. Purity of a state can be computed by formula

P = Tr
[
ρ̂2
]

= 4π

∫ ∞
−∞

dp

∫ ∞
−∞

dx W 2(x, p). (17)

We will study now special class of quantum states called Gaussian states.

2.3 Gaussian states

Quantum Gaussian states are defined as the states which Wigner function is multi-
dimensional Gaussian function [35]. One mode Gaussian Wigner function reads

W (x, p) =
1

2π
√

DetV
exp

[
−1

2
(q-d)TV −1(q-d)

]
, (18)

where q = (x, p) is vector of quadratures and d = (〈x〉, 〈p〉) is vector of mean values
and Vij = 1

2
〈qiqj + qjqi〉 − 〈qi〉〈qj〉 is covariance matrix. If covariance matrix refers to

quantum state, its eigenvalues λ1 and λ2 have to satisfy relation

λ1λ2 ≥ 1. (19)

General single-mode Gaussian state can be always adapted by phase to form

W (x, p) =
1

2π
√
VxVp

exp

[
−(x− 〈x〉)2

2Vx
− (p− 〈p〉)2

2Vp

]
. (20)

Gaussian states purity is then defined as

P = VxVp. (21)
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Fig. 1: Wigner quasi-probability distribution of Gaussian states: (top-left) vacuum
state, (top-right) coherent state with means values 〈x〉 = 〈p〉 = 2, (bottom) pure
squeezed state with variances Vx = 1

3
and Vp = 3 and with mean values 〈x〉 = 〈p〉 = 0.

Special cases of Gaussian states are vacuum state, coherent state and squeezed
state. Vacuum state is state with minimal energy and minimal uncertainty VxVp = 1.
It exhibits zero mean values 〈x〉 = 〈p〉 = 0 in both quadratures and corresponding
variances Vx = Vp = 1 are equal to unity because of normalization. Vacuum state
Wigner function depicted in Fig. 1 reads

W (x, p) =
1

2π
exp

[
−x

2 + p2

2

]
. (22)

Coherent state is eigenstate of annihilation operator. It again exhibits minimal un-
certainty and its quadrature variances Vx = Vp = 1 are still equal to unity but mean
values can be non-zero. Covariance matrix of all coherent states is identity matrix 1.
Coherent state Wigner function depicted in Fig. 1 reads

W (x, p) =
1

2π
exp

[
−(x− 〈x〉)2 + (p− 〈p〉)2

2

]
. (23)

Squeezed state has one of the quadrature variances smaller than unity. It can exhibit
non-zero mean values and higher uncertainty VxVp ≥ 1 than vacuum and coherent state.
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Squeezed state with minimal uncertainty depicted in Fig. 1 is called pure squeezed state
because its purity reach unity. Vacuum and coherent states are pure as well.

Important difference is between squeezed state and quantum squeezing. Quantum
squeezing is a property of every state which has one of the quadrature variances smaller
than unity. On the other hand, squeezed states are considered to be Gaussian states.
Quantum squeezing is an important resource for many quantum experiments. Squeezed
states can be prepared if large number of copies of state with squeezing is available
by mixing them on many beam splitters without any detection. Final state will be
Gaussified in consequence of quantum central limit theorem [16, 17].

Quantum non-classical states [28] are states which are not a mixture of coherent
states in form

W (x, p) =

∫
{d,1}

P (ξ)Wξ(x, p)dξ (24)

where integral is over all physical values of parameters ξ = (d, 1). So-called quantum
non-Gaussian character [29] means that state is not a mixture of Gaussian states in
form

W (x, p) =

∫
{d,Vij}

P (ξ)Wξ(x, p)dξ (25)

where integral is over all physical values of parameters ξ = (d, Vij). Non-Gaussian
character is an important witness of quantum non-classical character, weaker than
negativity of Wigner function but stronger than non-classicality. Very good examples
of quantum non-classical states are Fock states which will be studied now.

2.4 Fock states

The Fock states studied in Ref. [35] are eigenstates of photon number operator N̂ and
they have no quantum noise in energy. Fock states again form an orthogonal basis {|n〉}
and 〈m|n〉 = δmn. Fock-state Wigner function reads

Wn(x, p) =
1

2π
(−1)nLn(x2 + p2) exp

[
−x

2 + p2

2

]
, (26)

where Ln(y) is Laguerre polynomial. Single-photon state Wigner function depicted in
Fig. 2 is expressed as

W1(x, p) =
1

2π
exp

[
−x

2 + p2

2

] (
x2 + p2 − 1

)
(27)

and two-photon state Wigner function depicted in Fig. 2 is expressed as

W2(x, p) =
1

2π
exp

[
−x

2 + p2

2

] (
x4 + p4 − 4x2 − 4p2 + 2p2x2 + 2

)
. (28)

Ideal Fock states are infinitely squeezed in number of photons. It means their energy
uncertainty is infinitely squeezed as well. More realistic approximation of real state
is attenuated Fock state which can be modeled from pure Fock state by splitting off
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some portion of the energy on beam splitter with transmittance η (beam splitter will
be discussed in detail later). Density matrix of attenuated single-photon state reads

ρ̂1 = η|1〉〈1|+ (1− η)|0〉〈0| (29)

and its Wigner function changes to W (x, p) = ηW1(x, p) + (1 − η)W0(x, p), where
W0(x, p) is vacuum state Wigner function. Similarly attenuated two-photon state den-
sity matrix reads

ρ̂2 = η2|2〉〈2|+ 2η(1− η)|1〉〈1|+ (1− η)2|0〉〈0| (30)

and its Wigner function is given as

W (x, p) = η2W2(x, p) + 2η(1− η)W1(x, p) + (1− η)2W0(x, p). (31)

Measurement of attenuated single-photon state Wigner function was made in Ref. [22].
Fock states have high non-Gaussian character because of their Wigner function

attain negative values. Attenuated Fock states negativity vanishes for η < 0.5 (see
Fig. 2) but states still have non-Gaussian character because they cannot be expressed
as mixture of Gaussian states [29].

Fig. 2: Wigner quasi-probability distribution of Fock states: (top-left) pure single-
photon state, (top-right) pure two-photon state, (bottom-left) attenuated single-photon
state with η = 0.5 and (bottom-right) attenuated two-photon state with η = 0.5.

In the next section, we will discuss transformations of quantum states.
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2.5 Linear Gaussian operations

Transformations mapping Gaussian states to other Gaussian states are called Gaussian
operations [35]. Basic unitary Gaussian operations used in this thesis are one-mode
coherent displacement and two-mode beam splitter.

Coherent displacement D̂(α) is unitary operator shifting quantum state in phase
space of x and p variables. It can be defined by annihilation and creation operator as

D̂(α) = e(αâ†−α∗â). (32)

Displacement transformation of quadratures operators can be written as

x̂→ D̂(α)†x̂D̂(α) = D̂(α)†
(
â† + â

)
D̂(α) = â† + α∗ + â+ α = x̂+ 2Re(α), (33)

p̂→ D̂(α)†p̂D̂(α) = D̂(α)†
(
iâ† − iâ

)
D̂(α) = i(â† + α∗ − â− α) = p̂+ 2Im(α), (34)

and by substitution x̄ = 2Re(α) and p̄ = 2Im(α) we can rewrite the transformations
to

x̂→ x̂+ x̄, p̂→ p̂+ p̄. (35)

To perform displacement, quantum filed interaction with ”classical” driving field is
needed. Driving field α interaction during time τ ∈ (0, t) is describe by Hamiltonian

HI
D = ih̄

(
δαâ† − δα∗â

)
=
h̄

2
(δxp̂− δpx̂) , (36)

where δα = (δx+ iδp) /2 and displacements then read x̄ = δxt and p̄ = δpt. In Wigner
function representation, displacement is provide by transformation

W (x, p)→ W (x′ − x̄, p′ − p̄). (37)

Beam splitter interaction couples two modes together. It uses classical optics beam
splitter. In Heisenberg picture interaction is provided by transformation

x̂′1 =
√
T x̂1 +

√
1− T x̂2, p̂′1 =

√
T p̂1 +

√
1− T p̂2,

x̂′2 =
√
T x̂2 −

√
1− T x̂1, p̂′2 =

√
T p̂2 −

√
1− T p̂1, (38)

where T ∈ (0, 1) is beam splitter transmittance and indexes 1 and 2 refer to appropriate
modes. Beam splitter interaction can be described by unitary operator [36]

ÛBS(T ) = T
n̂1
2 exp

[√
1− T â†1â2

]
exp

[
−
√

1− T â†2â1

]
T−

n̂2
2 . (39)

In Wigner function representation, interaction is described by substitution

x1 =
√
Tx′1 −

√
1− Tx′2, p1 =

√
Tp′1 −

√
1− Tp′2,

x2 =
√
Tx′2 +

√
1− Tx′1, p2 =

√
Tp′2 +

√
1− Tp′1, (40)

and Wigner function is then transformed as

W1(x1, p2)W2(x2, p2)→ W1(
√
Tx′1 −

√
1− Tx′2,

√
Tp′1 −

√
1− Tp′2)×

W2(
√
Tx′2 +

√
1− Tx′1,

√
Tp′2 +

√
1− Tp′1). (41)

Now we will discuss measurements of optical mode and operations of quantum states
which can be implement by such measurements.

9



2.6 Threshold detector and photocounters

Threshold detector studied in Ref. [37] is provided by one-mode measurement with
two possible results: at least one photon comes to detector or no photons come to
detector. To describe threshold detector in operator form, we have to introduce positive
operator measure (POVM) formalism which is the most general measurement allowed
by Copenhagen interpretation of quantum mechanics [38]. POVM is given by set of
positive semidefinite self-adjoin operators which sum to unity. POVM components are
not necessarily orthogonal in contrast to projectors. POVM is a direct generalization
of projective measurement.

Photon detection in threshold detector is described by POVM component Π =
1 − |0〉〈0|. Physically, threshold detector is based on Geiger-like detector where each
photon ionizes a single atom in detector chamber and electric pulse is amplified by
avalanche process of secondary ionizations to measurable pulse. Avalanche process is
the reason why detector cannot distinguish between number of photons incoming to
the detector. Threshold detector is sometimes called avalanche photodiode. In Wigner
function formalism, POVM component Π = 1−|0〉〈0| is described by filtration function

WΠ(x, p) = 1− 4πW0(x, p) (42)

where W0(x, p) is vacuum state Wigner function. Probability of measuring POVM
component Π = 1− |0〉〈0| on state with Wigner function W (x, p) is given as

PΠ =

∫ ∞
−∞

dp

∫ ∞
−∞

dx W (x, p)WΠ(x, p). (43)

This measurement returns zero for vacuum state and unity for any other Fock state.
More advanced detectors which can distinguish number of incoming photons are

called photon-number resolving detectors. They project to Fock states and the projec-
tors can be written as Πk = |k〉〈k| where k = 1, 2, ... and in Wigner function formalism,
measurement is described by filtration function

WΠk
(x, p) = 4πWk(x, p) (44)

where Wk(x, p) is Wigner function of k-photon state. It is challenging to distinguish
all Fock states, however, photon number resolving detectors discriminating low Fock
states already exist [39].

So far, we assume the ideal cases where every photon incoming to the detector
cause measurable pulse but in reality, some photons are reflected from side of the
detector and some photons are not detected because after each detection, detector
cannot record other photon for certain dead time. It can be described by dimensionless
quantum efficiency η representing fraction of all incoming photons which are converted
to measurable pulse. Realistic detector can be modeled with ideal detector by splitting
the incoming mode on beam splitter with transmittance η. In this thesis, it is dominant
imperfection which is considered. We neglect dark counts of photo-counters, since they
can be negligibly small for available detectors.

In the next section, we will discuss homodyne and heterodyne detection which are
the crucial tools used in this thesis.
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2.7 Homodyne and heterodyne detection

Homodyne detection is measurement projected on quadratures eigenstates [35, 37].
Projector of ideal measurement without electronic noise is given as Πx = |x〉〈x| for
measuring quadrature x̂ and as Πp = |p〉〈p| for measuring quadrature p̂. Homodyne
detection is based on beam splitter interaction of signal mode and highly excited clas-
sical mode at the same frequency called local oscillator. We use balanced homodyne
detection. In balanced homodyne detector, signal mode and local oscillator interfere on
symmetric beam splitter and same photodetectors are applied on both output modes
to reach statistics of the field quadrature. Measurement of particular quadrature is
controlled by phase difference between signal and local oscillator.

In this thesis, balanced homodyne detection and post-selection are used to extract
squeezing from single or multiple copies of the general state. Post-selection of quadra-
ture x̂0 measurement results from narrow interval around x̄ is used to prepare final state
in an asymptotic regime of low probability of success. In Wigner function formalism,
it is provided by transformation

W (x1, p1, x0, p0)→ 1

N(x̄)

∫ ∞
−∞

dp0 W (x1, p1, x̄, p0) = W̃ (x1, p1|x̄) (45)

of two mode Wigner functionW (x1, p1, x0, p0) to conditional Wigner function W̃ (x1, p1|x̄)
where norm of the final Wigner function N reads

N(x̄) =

∫ ∞
−∞

dx1

∫ ∞
−∞

dp1

∫ ∞
−∞

dp0 W (x1, p1, x̄, p0). (46)

When selection from narrow interval is used, norm N is infinitely small. Post-selecting
from finite interval [x̄min, x̄max] is used to reach state with finite norm of Wigner func-
tion. Final Wigner function is then given as

W̃ (x1, p1|x̄) =
1

N(x̄)

∫ x̄max

x̄min

dx̄

∫ ∞
−∞

dp0 W (x1, p1, x̄, p0) (47)

and norm is expressed as

N(x̄) =

∫ ∞
−∞

dx1

∫ ∞
−∞

dp1

∫ x̄max

x̄min

dx̄

∫ ∞
−∞

dp0 W (x1, p1, x̄, p0). (48)

Norm then represents success probability PS of the measurement. Final state is Gaus-
sian as long as the initial stateW (x1, p1, x0, p0) is Gaussian, however, the transformation
of statistical moments of quadratures cannot be generally obtained by any unitary evo-
lution governed by quadratic Hamiltonian [18]. We call this operation Gaussian even if
we apply it on non-Gaussian states, since the operation only uses the Gaussian toolbox.

If set-up contains only beam splitters and homodyne detectors measuring just one
quadrature and we are interested only in behavior of the same quadrature as was mea-
sured, we do not have to work with whole Wigner function because probability distribu-
tion of this quadrature carries all desired information. To demonstrate this character,
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we consider two states with Wigner functions WA(x, p) and WB(x0, p0) mixed on beam
splitter with transmittance T and selective homodyne measurement of quadrature x̂′0
applied on one of the output modes. Final state conditional probability distribution of
quadrature x̂′1 reads

P̃ (x′1|x̄) =

∫ ∞
−∞

dp′1 W̃ (x′1, p
′
1|x̄) =

1

N(x̄)

∫ ∞
−∞

dp′1

∫ ∞
−∞

dp′0×

WA(
√
Tx′1 −

√
1− T x̄,

√
Tp′1 −

√
1− Tp′0)WB(

√
T x̄+

√
1− Tx′1,

√
Tp′0 +

√
1− Tp′1).

(49)

After backward beam splitter substitution of momentum quadratures

p1 =
√
Tp′1 −

√
1− Tp′0, p0 =

√
Tp′0 +

√
1− Tp′1,

dp1dp0 = dp′1dp
′
0, (50)

conditional probability distribution of quadrature x̂′1 is given as

P̃ (x′1|x̄) =
1

N

∫ ∞
−∞

dp1

∫ ∞
−∞

dp0 WA(
√
Tx′1 −

√
1− T x̄, p1)WB(

√
T x̄+

√
1− Tx′1, p0) =

1

N(x̄)
PA(
√
Tx′1 −

√
1− T x̄)PB(

√
T x̄+

√
1− Tx′1) (51)

where PA and PB are coordinate quadrature probability distributions of input states.
Similarly, norm is expressed as

N(x̄) =

∫ ∞
−∞

dx′1

∫ ∞
−∞

dp′1

∫ ∞
−∞

dp′0 WA(
√
Tx′1 −

√
1− T x̄,

√
Tp′1 −

√
1− Tp′0)×

WB(
√
T x̄+

√
1− Tx′1,

√
Tp′0 +

√
1− Tp′1) =∫ ∞

−∞
dx′1

∫ ∞
−∞

dp1

∫ ∞
−∞

dp0 WA(
√
Tx′1 −

√
1− T x̄, p1)WB(

√
T x̄+

√
1− Tx′1, p0) =∫ ∞

−∞
dx′1 PA(

√
Tx′1 −

√
1− T x̄)PB(

√
T x̄+

√
1− Tx′1). (52)

This approach can be extended to protocol with selection of measured values from finite
interval as well as for more advanced protocols with many beam splitters and homodyne
detectors. On the other hand, complementary momentum quadrature is affected by
coordinate measurement and we have to compute with whole Wigner function to reach
momentum probability distribution.

Heterodyne detection is natural extension of homodyne detection and it is also stud-
ied in detail in Ref. [37]. It measures both complementary quadratures at one time. A
generalized version of heterodyne detection can be easily implemented by tapping the
signal mode on beam splitter with transmittance T and applying homodyne detection
measuring coordinate quadrature on transmitted mode and homodyne detection mea-
suring momentum quadrature on reflected mode. Post-selection of quadratures x̂ and
p̂ from narrow interval around x̄ and p̄ respectively can be used. Note, original version
of heterodyne detection is typically for the case T = 0.5.
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3 Recycling strategies with Gaussian tools

Interconvertibility of quantum resources is important for development of modern quan-
tum physics. Squeezing is an important resource of quantum non-classicallity, being the
key element of continuous-variable quantum processing. If the squeezing is not directly
observable, there are two fundamentally different types of squeezing extraction: distil-
lation of quantum squeezing and recycling of quantum squeezing. Both methods use
general protocol of extraction depicted in Fig. 3. The extraction couples N input states
ρ̂in on arbitrary linear optical network consists of beam splitters and mirrors. Trigger
then prepares final state ρ̂out by selecting cases when all results x̄i of M homodyne
measurements lay in chosen intervals x̄i ∈ [x̄i,min, x̄i,max].

Ρ
`

in Ρ
`

in Ρ
`

in Ρ
`

in

Ρ
`

out

LO network

Homodyne detectors

x1 x2 x3 xM

Trigger

Scheme of extraction

Ρ
`

in Ρ
`

in Ρ
`

in Ρ
`

in

Ρ
`

out

LO network

Homodyne detectors

x1 x2 x3 xM

Trigger

CH CH CH CH

Scheme of distillation and recycling

Fig. 3: Schemes of quantum Gaussian extraction, distillation and recycling: (right)
quantum Gaussian extraction uses arbitrary linear optical (LO) network and M homo-
dyne detectors to prepare final state ρ̂out from N input state copies ρ̂in. Trigger chooses
cases only when measurement results x̄i lay in selected intervals [x̄i,min, x̄i,max] for all
i = 1, ...M . (Left) quantum Gaussian distillation and recycling use extraction protocol
to prepare the output state ρ̂out from resource states wasted in a channel CH where
the channel represents any disturbing protocol. Difference between quantum Gaussian
distillation and recycling is in a type of input state. For distillation, type of the input
state is the same as type of the output state ρ̂out in contrast to recycling where the
input state could be arbitrary another resource state.

Distillation and recycling apply extraction on resource states wasted in a channel CH
to reach useful state again. Squeezing distillation extracts squeezing from state which
exhibited squeezing but the squeezing was lost in the channel. For example, the channel
could be represented by random coherent displacement. Squeezed state can be distilled
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from originally squeezed state disturbed by this channel [10]. For another example, we
consider phase averaged squeezed state which no longer exhibits squeezing. Squeezing
distillation from that state was described in Ref. [11]. Knowledge of squeezing before
the disturbing operation is important for construction of squeezing distillation. It allows
to choose the optimal distillation strategy to eliminate the noise in the channel. On the
other hand, for general squeezing extraction we do not have to know anything about
history of the input state or even the input state do not have to exhibit squeezing at all.
Squeezing recycling is another sub task of extraction which transforms useless resource
states to useful state of different kind in contrast to squeezing distillation, where crucial
property of both resource and final states is quantum squeezing.

The most commonly used resource state for the recycling in this thesis is attenu-
ated single-photon state. Single-photon state with high purity is important resource of
quantum optics. It can be used to conditionally prepare any continuous-variable quan-
tum state. On the other hand, wasted single-photon state is highly attenuated with
η < 0.5 exhibiting positive Wigner function and it cannot be used for that purpose.
Moreover, distillation of single-photon states towards higher η is impossible with linear
optics tools and selective measurement which was proved in Ref. [31]. However we could
try to extract squeezing from attenuated single-photon states by recycling. Squeezing
is another very important resource of quantum continuous optics in contrast to highly
attenuated single-photon state.

To be sure that our procedure do not generate squeezing itself, which will be cheating
in our task, we consider squeezing recycling with only Gaussian tools: linear optical
components (mirrors and beam splitters) and homodyne or heterodyne detection. Any
combination of them cannot generate squeezing from classical states (see Section 2.3).
Attenuated single-photon and two-photon states will be considered as input wasted
resource states. Commonly generated attenuated single-photon states and homodyne
detection in the recycling procedure will be mainly analyzed. Differently to squeezing
distillation approach in Ref. [10], we measure the quadrature in which squeezing is
generated at the output of the method. Differently to the method in Ref. [11] we
will vary post-selection from x̄ = 0 and optimize it for given wasted resource state.
Two-photon states and heterodyne detection will be used as extension for fundamental
recycling protocols with single-photon states and homodyne detection, to see, whether
we can obtain a larger squeezing.

There are several types of schemes we can use for squeezing recycling. We can distin-
guish universal recycling methods and non-universal methods. The universal squeezing
recycling means that the protocol follows an universal receipt which does not depend on
specifics of the input state. Explicitly, it considers x̄i = 0 for all indexes i (see Fig. 3).
On the other hand, non-universal recycling protocol is optimized for each recycled state.
Further, we can sort the methods in respect of number of state copies which are used.
Single-copy recycling uses a weak measurement of coordinate of single input state and
on the other hand, two-copy recycling uses an interference of two copies of input state
in a combination with coordinate measurement. Moreover, we can investigate more
complicated multi-copy recycling protocols promising to obtain more squeezing. In this
thesis, linear-structure and tree-structure of multi-copy protocols are studied. They
will be introduced later in detail.
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4 Single-copy Gaussian recycling

The simplest single-copy squeezing recycling depicted in Fig. 4 is based on weak position
measurement.

Ρ
`

in

T x

homodyne
detection

Ρ
`

out

Fig. 4: Scheme of single-copy recycling: input state ρ̂in is tapped on beam splitter with
transmittance T and homodyne detection measurement is applied on tapped mode.
Post-selecting measured coordinate x̄ from x̄ ∈ [x̄min, x̄max] is performed to reach final
state ρ̂out.

The input state with probability distribution Pin(x) of the coordinate is tapped on
the beam splitter with the transmittance T . After the coordinate measurement of the
tapped mode giving result x̄, the conditional probability density can be expressed as

Pout(x|x̄) ∝ Pin

(√
Tx−

√
1− T x̄

)
exp

−
(√

T x̄+
√

1− Tx
)2

2

 (53)

and it can be rearranged by substitution y = x−
√

1−T√
T
x̄ to the filtration formula

Pout(y|x̄) ∝ G (y, x̄, T )Pin

(√
Ty
)
,

G (y, x̄, T ) ∝ exp

−
(

1√
T (1−T )

x̄+ y

)2

2 1
1−T

 , (54)

where the initial distribution Pin(x) is first re-scaled by factor
√
T and then filtered by

the Gaussian filter G0(x, x̄, T ) with the mean value 1√
T (1−T )

x̄ and the variance 1
1−T .

Clearly for weak measurement limit T ≈ 1 desired to not attenuate the input state,
therefore the re-scaling vanishes and the filter G(x, x̄, T ) becomes a broader and it can
be located at an arbitrary average position controlled by x̄.
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When we measure x̄ from finite interval [x̄min, x̄max] final probability distribution is
given as

Pout(x) =
1

N(x̄)

∫ x̄max

x̄min

dx̄ G

(
x−
√

1− T√
T

x̄, x̄, T

)
Pin

(√
Tx−

√
1− T x̄

)
, (55)

which exhibits also the filtration structure in realistic form. Norm N is expressed as

N(x̄) =

∫ ∞
−∞

dx

∫ xmax

xmin

dx̄ G

(
x−
√

1− T√
T

x̄, x̄, T

)
Pin

(√
Tx−

√
1− T x̄

)
. (56)

These formulas will be used now for specific cases to determine the recycled distri-
butions and the probability of success. Universal recycling will be introduced now.

4.1 Universal single-copy recycling

The universal version of single-copy filtration uses Gaussian filter with x̄ = 0. Univer-
sality means that post-selected value x̄ does not depend on input state. This filtration
method well isolates behavior of P (x) distribution close to origin x = 0 and suppresses
all peaks of P (x) far from origin. As Variance 1

1−T of the filter increases, the filter less
attenuates the input state. However, the filtering is less selective, since the filtering
function is broader. The transmittance T can therefore be optimized to reach optimal
performance. However, the post-selected value x̄ = 0 remains constant, i.e. x̄ does not
depend on particular P (x).

To understand performance of the filter on general state, it is now described in the
operator formalism. The operator can be obtain from a sandwich 〈x = 0|0ÛBS(T )|0〉0
of the unitary operator

ÛBS(T ) = T
n̂
2 exp

(
−
√

1− T â†0â
)

exp
(√

1− T â†â0

)
T−

n̂0
2 (57)

describing the tapping beam splitter by vacuum state |0〉0 of the auxiliary mode 0 and
position eigen-state |x = 0〉0 on which we subsequently project the mode 0. Using an
asymptotical version |x = 0〉 of physical squeezed state

|x = 0, s〉 =
(
1− s2

) 1
4

∞∑
n=0

√
(2n)!√
2nn!

sn|2n〉 (58)

for s→ 1 and Taylor series of exp
(
−
√

1− Ta†0a
)

, we obtain

〈x = 0|0ÛBS(T )|0〉0 ∝ T
n̂
2 exp

(
−1− T

2
â2

)
(59)

describing the Gaussian filter Ĝ(0, T ) in the operator representation.
The filter is a function of the phase-insensitive operator â2 describing two-photon

annihilation, however, it can transform phase insensitive states (symmetrical in phase
space) to phase sensitive ones. Clearly, it does not change the single-photon state
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Fig. 5: Single-copy universal recycling: (top) probability distribution of coordinate for
state after single-copy recycling from pure two-photon state (full-thick) compared to
input state (dashed-thick) and vacuum state (full-thin). (Bottom-left) optimal trans-
mittance to achieve maximal squeezing from two-photon input state. (Bottom-right)
minimal variance of the squeezed coordinate extractable from two-photon state (full-
thick) and variance of anti-squeezed coordinate (dashed-thick) compared to vacuum
noise(full-thin).

|1〉. The universal single-copy recycling applied on attenuated single-photon state ρ̂ =
η|1〉〈1|+ (1− η)|0〉〈0| gives the variance

Vout = 3− 2(1− η)

1− η(1− T )
, (60)

which does not exhibit any squeezing for any T . In the limit T → 1, the variance
Vout approaches V = 1 + 2η of original attenuated single-photon state. However, im-
plementing the Gaussian filter Ĝ(0, T ) on non-classical Fock state |2〉, we obtain the
superposition

1√
T 2 + (1−T )2

2

(
1− T√

2
|0〉 − T |2〉

)
(61)

which exhibits squeezing for T < 1
3

and reach minimal variance VS = 3 −
√

6 ≈ 0.55

for T = 1 −
√

2
3
≈ 0.18. After single-copy universal recycling, attenuated two-photon
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state reach probability distribution of coordinate

Pout(x) =
e−

x2

2 (η (3η + ηT 2x4 + 2(2− 3η)Tx2 − 4) + 2)√
2π(η(T − 1)(3η(T − 1) + 4) + 2)

(62)

with variance

VS =
η(3η + 3T (η(5T − 6) + 4)− 4) + 2

η(T − 1)(3η(T − 1) + 4) + 2
(63)

which exhibits squeezing for η > 2
3
. Optimal transmittance is

Topt =
3η(3η − 4)−

√
6
√
η(3η − 4) + 2 + 6

3η(3η − 2)
(64)

and its dependence on η is depicted in Fig. 5. Transmittance is small in comparison
with weak measurement (T ≈ 1) which is used for all other cases discussed bellow.
Optimal transmittance Topt is increasing function of η and its limit for threshold value
η = 2

3
is zero. Minimal variance reaches

VS = 3−
√

6
√
η(3η − 4) + 2 (65)

which is depicted in Fig. 5. It is decreasing function of η and VS < 1 appears for any
η > 2

3
. Evolution of pure two-photon state governed by universal single-copy recycling

is depicted in Fig. 5. Input state probability distribution has one central peak and
two side peaks. Gaussian filter shifts side peaks a bit further from origin but mainly
it suppresses them very much that they are almost negligible. On the other hand, the
central peak is raised and it gets narrower than vacuum state distribution.

Squeezing cannot be recycled from single-photon state by universal single-copy pro-
tocol but interestingly, it can be recycled from two-photon states for any η > 2

3
. It

shows that more sophisticated procedures have to be developed to extract squeezing
from single-photon states or attenuated two-photon state with positive Wigner function.

4.2 Non-universal single-copy recycling

First, measured position x̄ can be optimized to reach maximal squeezing unlike in
universal recycling. Gaussian single-copy filter can be set to isolate behavior near any
point x̄.

To obtain an operator form of the non-universal single-copy recycling, we now cal-
culate the matrix product

〈x = 0|0D̂0(x̄)ÛBS(T )|0〉0, (66)

where D̂0(x̄) = exp
(
x̄(â† − â)

)
is the displacement operator shifting the measurement

of position. Using Baker-Hausdorff theorem

eA+B = eAeBe−[A,B]/2 = eBeAe[A,B]/2 (67)
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for [A, [A,B]] = [B, [A,B]] = 0, we can decompose the displacement operator

D̂0(x̄) = exp

(
x̄2

2

)
exp (−x̄â) exp

(
x̄â†
)
. (68)

Using the Baker-Haussdorff theorem once more, we commute

exp (−x̄â0) exp
(
−
√

1− T â†0â
)

= exp
(
−
√

1− T â†0â
)

exp (−x̄â0) exp
(
x̄
√

1− T â
)
(69)

and obtain
T n̂ exp

(
x̄
√

1− T â
)
〈x = 0|0 exp

(
−
√

1− T â†0â
)
|0〉0, (70)

where the last part has been calculated previously. Using it, we derive the operator
form of

Ĝ(x̄, T ) = T n̂ exp

(
x̄
√

1− T â− 1− T
2

â2

)
(71)

for the single-copy Gaussian filter. If the value of x̄ is large and simultaneously T →
1, the filter converges to the asymptotical form Ĝ(T ) = T n̂ exp

(
x̄
√

1− T â
)
, being

different from the universal symmetrical Gaussian filter described above. For fixed
T approaching unity, the attenuated single-photon state cannot be converted to the
squeezing since the state almost annihilated by the filter Ĝ(T ).

Considering x̄ finite, single-photon state with η = 1 can be converted by non-
universal single-copy filter to a superposition

1

1 + x̄2(1− T )

(
x̄
√

1− T |0〉+ |1〉
)
, (72)

which after optimization over x̄ for given T exhibits minimal variance VS = 3/4. For the
single-copy of attenuated single-photon state, the minimum of conditional variance VS
of the output state for a given transmission T of the beam splitter over the post-selection
value x̄, it approaches

VS =
4 + η(3T − 4)

4(1− η(1− T ))
(73)

for an optimal x̄opt =
√

3
√

1−η+ηT
η(1−T )

. Simultaneously, the variance VA reaches

VA =
2− η(2− 3T )

2− 2η(1− T )
. (74)

In a limit T → 1 always exhibits the squeezing

VS = 1− η

4
(75)

for η > 0 at a cost of decreasing success rate. For η = 0.5, the variance approaches
VS = 7

8
. The variance VA = 1 + η

2
of complementary variable is always smaller than

the variance V = 1 + 2η of the original state. This additional purification effect in
the complementary momentum variable comes from non-Gaussian structure W (x, p) 6=
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Fig. 6: Optimal single-copy non-universal squeezing recycling from single-photon state:
recycled state probability distribution of squeezed quadrature (full-thick) for η = 0.5
(top-left) and η = 1 (top-right) compared to input state probability distribution
(dashed-thick), recycled state probability distribution of anti-squeezed quadrature (full-
thin) and probability distribution of coherent state (dashed-thin). (Bottom-left) the
variance VS of squeezed quadrature (full-thick), the variance VA of the complementary
quadrature (dashed-thick) compared to vacuum noise (dashed-thin) and variance of
attenuated single-photon state (full-thin). (Bottom-Right) purity of the recycled state
(full line) compared to purity of input state (dashed line).

W (x)W (p) of the single-photon state. Probability distribution of squeezed quadrature
after optimal recycling is depicted in Fig. 6. Evolution of probability distribution is
more complicated than in the case of universal single-copy recycling because of the
non-universality of the Gaussian filter. Input distribution has two peaks for η > 1

3
but

two-peak structure of recycled distribution vanishes for η < 0.84. For η > 0.84, only
one peak is raised and the other is suppressed and negligible. Raised peak is shifted
a bit closer to the origin because the filter cannot completely inhibit the influence of
the second peak of input distribution. Recycled distribution is narrower than coherent-
state coordinate probability distribution. The dependencies of VS and VA for T → 1
are depicted in Fig. 6(bottom-left).

Remarkably, an imperfect single-photon state even with positive Wigner function
can be conditionally converted to the directly observable quadrature squeezing by the
non-universal recycling for any η > 0, whereas it is impossible for the universal one.
Although the imperfect single photons with the positive Wigner function cannot be
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recycled to better single photon with negative Wigner function by a linear optical
network and homodyne detectors [31], they can be converted to the squeezing being
another important and irreducible resource of quantum technology. It is the simplest
example of quantum recycling of resources.

If we use heterodyne detection instead of homodyne detection, the reachable squeez-
ing from single attenuated single-photon state is still the same because minimal achiev-
able variance of squeezed quadrature is still VS = 1 − η

4
. Moreover, this is a limit

for recycling from attenuated single photon for any projective or selective measure-
ment. This is a limit for photon-counting detectors in combination with displacement
as well as for threshold detector. Even ideal projective measurement to superposition
α|0〉 + β|1〉 applied on single-photon state has the same limit of squeezed quadrature
variance. Recycling with threshold detector and ideal projective measurement, which
are both non-Gaussian detection strategies, will be discussed later in Section 7.2 and
Section 7.4, respectively. In summary, homodyne detection reaches maximal squeezing
extractable from single-photon state by single-copy recycling.

Now, we will discussed other properties of recycling with homodyne detection. The
generated squeezed state is not pure, we can compromise between the achievable squeez-
ing in coordinate and the noise in complementary momentum quadrature. Eliminating
x̄ and taking a limit T → 1 into account, the optimal trade-off is

VA,opt = 1 +
η

2
−
√
η2 − 4η + 4ηVS

2
(76)

with a smaller VA,opt(VS) comparing to the variance VA for the maximum of squeezing.
Moreover, the state is not exactly Gaussian, therefore purity P of the generated

state depicted in Fig. 6 (bottom-right) has to be calculated from the Wigner function,
giving

P (1) = 1− 2Tη(1− η)

(1 + η(1− T )(x̄2 − 1))2 , (77)

which is for any η monotonously increasing function of x̄, approaching unity for any T if
x̄2 is high enough. Since P (1) ≥ Pin where Pin = 1− 2η(1− η) is purity of initial single-
photon state, the procedure also purifies the state simultaneously with the squeezing
extraction. Simultaneously, in a limit of enough large x̄ also the purity of Gaussified
state PG = 1

4
√
VXVP

being PG(η, T, x̄) ≈ 1 − (1−η)T
8p(1−T )2x̄4 approaches unity for any η and

T < 1, at a cost of the success rate.
Measuring x̄ from finite interval is used to count success probability PS. Measuring

x̄ ∈ [x̄min,+∞) is optimal for single-copy recycling because optimal measured coordi-

nate is for limit x̄ → ∞. Transmittancy is given by T =
ηx̄2

min+3η−3

η(x̄2
min+3)

which is optimal

transmittance for measuring given coordinate x̄min. Trade-off VS versus PS is depicted
in Fig. 7. For the better squeezing, we unavoidably pay by smaller success probability.
For η = 0.3, squeezing is reached if PS < 1.36% which is still very feasible probability
of success for many experiments. For η = 0.5, squeezing is reached if PS < 11.87%.
For η = 0.9, squeezing is reached if PS < 45.73%. This implies that squeezing recy-
cling from single-photon states with small η has small success probability but on the
other hand squeezing can be recycled from high purity single-photon state with high
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Fig. 7: Single-copy non-universal squeezing recycling from single-photon state success
probability versus achieved squeezing: the variance VS for η = 0.3 (dot-dashed-thick)
and for η = 0.5 (full-thick) and for η = 0.9 (dashed-thick) compared to vacuum noise
(dashed).

success probability. Since the probability of success can be increased by a rate of single
photon production, we consider it as less important and technical parameter. Squeezed
quadrature variance goes to limit value VS = 1− η

4
as success probability goes to zero.

Two-photon state is again consider as input state to discussion about single-copy
recycling to visualize a tendency for higher Fock states. There are two qualitatively
different strategies which recycle squeezing from attenuated two-photon input state.
Universal single-copy recycling discussed above and weak measurement recycling like
in the case of single-photon state. Both these methods can be compared to reach
maximal squeezing. Nearly optimal weak measurement recycling is for measuring x̄

from narrow interval around x̄opt =
√

3
√

1−η(1−T )√
η(1−T )

, which is estimated in analogy with

single-photon input state where x̄opt is optimal measured coordinate. In limit T → 1
the variance is given as

VS = 1− 188η

529
, (78)

which is numerically verified minimal variance. Estimated nearly optimal measurement
reach optimal strategy in limit T → 1. In that limit x̄opt goes to infinity and squeezing
is extracted from asymptotic properties of the probability distribution in contrast with
universal recycling where squeezing is extracted from behavior of probability distribu-
tion near origin. Two-photon input state probability distribution has one central peak
and two wing peaks for η = 0.9. One-peak distribution is reached after recycling and
distribution has smaller variance than coherent state coordinate probability distribu-
tion (see Fig. 8). For η = 0.5, two-peak input state probability distribution is recycled
to one-peak distribution which has smaller variance than coherent state probability dis-
tribution of coordinate (see Fig. 8). The evolution of the probability distribution is the
same as in the case of non-universal single-copy distribution from single-photon state
(see Fig. 6). Only more peaks have to be suppressed.

Variances given by formulas Eq. (65) and Eq. (78) are compared to achieve maximal
squeezing and result is depicted in Fig. 8. Asymptotic weak measurement is optimal
for η < 0.952, which means that universal single-copy recycling is optimal for two-
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Fig. 8: Single-copy non-universal squeezing recycling from two-photon state: recycled
state probability distribution of squeezed quadrature x̂ (full-thick) for η = 0.5 (top-left)
and η = 0.9 (top-right) compared to input state probability distribution (dashed-thick)
and coherent state probability distribution (full-thin). (Bottom) the variance VS of
squeezed quadrature (full-thick), the variance VA of the complementary quadrature
(dashed-thick) compared to vacuum noise (dashed-thin) and to extractable variance
from single-photon state by non-universal single-copy recycling (full-thin). Variance of
quadratures are piecewise functions because for η < 0.952, asymptotic recycling with
x̄→∞ is optimal and for higher η, universal recycling with x̄ = 0 is optimal.

photon input state with high purity. From two-photon input state can be extract more
squeezing than from single-photon input state for any η > 0 (see Fig. 8).

Remarkably, squeezing can be recycled from attenuated single-photon state by non-
universal single-copy protocol for any η > 0 even from states with positive Wigner
function. It suggests that squeezing is recycled from properties hidden in quantum
non-Gaussian character of P (x) distribution. More squeezing can be extracted from
two-photon state than from single-photon one for every η > 0. It shows, that non-
Gaussianity of higher Fock states can be used to generate more squeezing.
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5 Two-copy Gaussian recycling

Two-copy Gaussian recycling is qualitatively different from single-copy protocol because
it uses interference of two copies of input state with distributions Pin(x) and then it
applies measurement unlike single-copy recycling which uses weak measurement. Two
copies of input state interfere on beam splitter with transmittance T and homodyne
detection measurement is applied on one of the output modes. Selection of measured
coordinate from narrow interval around x̄ is applied to achieve final state. Scheme
of the recycling is depicted in Fig. 9. The first part of the protocol before optional
Gaussian filter uses Hong-Ou-Mandel interference [40], however, homodyne detection
is used here instead of the photo-counters.

x xG

T TG
Ρ
`

in

Ρ
`

in

Ρ
`

out

optional
Gaussian filter

Fig. 9: Scheme of two-copy recycling: two copies of input state ρ̂in are mixed on
beam splitter with transmittance T and homodyne detection measurement is applied
on one mode. Post-selecting measured coordinate x̄ from x̄ ∈ [x̄min, x̄max] is performed.
Optional single-copy Gaussian filter composed of beam splitter with transmittance TG
and homodyne detector measuring coordinate from narrow interval around x̄G = 0 can
be used to reach final state ρ̂out.

Symmetric beam splitter for T = 0.5 is optimal for two-copy protocols because of
symmetric input states. It can be verified for particular states which we will use as input
states. Input modes have marginal probability distribution Pin(x1) and Pin(x2) of gen-
eralized coordinates x1 and x2. Coordinates x1 = (x′1 − x′2) /

√
2 and x2 = (x′1 + x′2) /

√
2

are coupled on the beam splitter. Output state has probability distribution in coordi-
nate x′1 given as

Pout(x
′
1|x̄) =

1

N(x̄)
Pin

(
x′1 − x̄√

2

)
Pin

(
x′1 + x̄√

2

)
(79)

after measurement of x′2 in narrow interval around x̄ where N(x̄) is a norm. Formula
can be rearranged by substitution y = (x′1 − x̄) /

√
2. Probability distribution is then

given as

Pout(y|x̄) =
1

N(x̄)
Pin (y)Pin

(
y +
√

2x̄
)

(80)
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and norm is then expressed as

N(x̄) =
√

2

∫ ∞
−∞

dy Pin (y)Pin

(
y +
√

2x̄
)

(81)

To understand the elementary recycling, output distribution can be redefined to P̃out(y|x̄)
expressed as

P̃out(y|x̄) = Pin (y)F (y, x̄) , F (y, x̄) =
Pin
(
y +
√

2x̄
)

N(x̄)
. (82)

Recycling works like filter on probability distribution Pin(y) with filtration function
F (y, x̄). Similar discussion was made in Ref. [19].

If we consider selection of measured coordinate x̄ from finite interval [x̄min, x̄max],
the output probability distribution is expressed as

P̃out(x|x̄) =

∫ xmax

xmin

dx̄ Pin

(
x− x̄√

2

)
F

(
x− x̄√

2
, x̄

)
(83)

and norm changes to

N(x̄) =

∫ ∞
−∞

dx

∫ xmax

xmin

dx̄ Pin

(
x− x̄√

2

)
F

(
x− x̄√

2
, x̄

)
. (84)

Norm now represents success probability of this selective measurement.
If output distribution has more than one peak, optional single-copy Gaussian filter

can be applied to separate one of the peaks and reach more squeezing. Two-copy
recycling can be divided to universal (x̄ = 0) and non-universal protocol (x̄ optimized).
These protocols will be studied now in particular.

5.1 Universal two-copy recycling

For universal two-copy recycling is used fixed protocol with x̄ = 0. The filtration func-
tion F (y, x̄ = 0) is now just rescaled input state distribution Pin(y) by norm N (x̄ = 0).

Condition for local maxima of probability distribution of output state

d

dy
P̃out(y|x̄ = 0) =

1

N (x̄ = 0)

d

dy
P 2
in(y) =

1

N (x̄ = 0)
2Pin(y)

d

dy
Pin(y) (85)

is equivalent to d
dy
Pin(y) = 0 which implies that positions of conditional output distri-

bution P̃out(y|x̄ = 0) local maxima xmaxout are equal to positions of local maxima xmaxin of
input distribution multiplied by

√
2 hence substitution y = x′1/

√
2. It means that all

local maxima are conserved after the transformation and they are just shifted further
from origin [19]. Probability distribution less probable values are then suppressed by
fitration Eq. (82) and probability distribution P̃out(y|x̄ = 0) is peaked up around its
global maxima. Due to its process, global maxima get higher and more separate and
other local minima are suppressed. If the input state distribution has multiple-global
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Fig. 10: Two-copy universal recycling from single-photon state after optional Gaussian
filter: variance of squeezed quadrature with highlighted optimal squeezing (full-thick
line).

maxima, they are conserved by this transformation and single-copy Gaussian filter has
to be applied to pick-up one of the peaks. Moreover, relative concavity defined as

d2

dx2P (x)

P (x)
(86)

in points of local maxima of the distribution P (x) are conserved in process of two-copy
universal recycling [19].

Two-copy universal recycling is a basic element of multi-copy universal recycling
which will be discussed later. Therefore, mechanism of two-copy universal recycling is
crucial for understanding the multi-copy recycling.

Attenuated single-photon state can be again used as the input resource state. After
universal two-copy recycling output state probability distribution

Pout(x) =
e−

x2

2 (η (x2 − 2) + 2)
2

√
2π(4− η(4− 3η))

(87)

of coordinate x is reached. Variance of quadrature x̂ is given as

V =
η(7η + 4) + 4

4− η(4− 3η)
. (88)

This variance is still higher than unity since it can be dominantly influenced by presence
of two peaks. Universal single-copy Gaussian filter has to be used to extract squeezing.
For η < 1

3
, probability distribution Pout(x) has single global maximum in the origin and

Gaussian filter can be directly applied to reach filtered distribution

Pout,G(x) =
e−

x2

2 (η (TGx
2 − 2) + 2)

2

√
2π (η2(4− TG(4− 3TG))− 4η(2− TG) + 4)

(89)
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Fig. 11: Two-copy universal recycling from single-photon state after single-copy Gaus-
sian filter: (top) for η = 0.9, squeezed quadrature probability distributions after fil-
tration (full-thick) and before filtration (dashed-thick) are compared to probability
distributions of initial state (full-thin) and vacuum state (dashed-thin). (Bottom-left)
minimal variance VS (full-thick) is compared to vacuum noise (dashed-thin). (Bottom-
right) Optimal transmittance of single-copy filter to reach maximal squeezing.

with variance

V (x) =
η(η(3TG(5TG − 4) + 4) + 12TG − 8) + 4

η2(4− TG(4− 3TG))− 4η(2− TG) + 4
(90)

where TG is transmittance of beam splitter in Gaussian filter. This filtered state still
cannot exhibit any squeezing.

For η > 1
3
, the probability distribution Pout(x) has two global maxima placed sym-

metrically around the origin in points xmaxout = ±
√

6η−2
η

. State have to be displaced

that one of the maxima will be shifted to origin. This can be describe by substitution

x = x′ −
√

6η−2
η

and then universal single-copy Gaussian filter can be applied to pick

up the peak in the origin and suppress the other one. Alternatively, we can consider
displaced input state, which probability distribution in coordinate x has maxima in

points xmaxin = ±
√

3η−1
η

.

Variance of filtered probability distribution is depicted in Fig. 10. Filtered state
exhibits squeezing for η > 0.5. Numerically optimized variance and optimal transmit-
tance TG are depicted in Fig. 11. For η > 0.82, two-copy universal recycling can extract
more squeezing from single-photon state than single-copy non-universal recycling (see
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Fig. 12: Two-copy universal recycling from two-photon state after single-copy Gaussian
filter extracting squeezing from wing peak: (top) for η = 0.75, squeezed quadrature
probability distributions after filtration (full-thick) and before filtration (dashed-thick)
are compared to probability distributions of initial state (full-thin) and vacuum state
(dashed-thin). (Bottom-left) minimal variance VS (full-thick) is compared to vacuum
noise (dashed-thin). (Bottom-right) Optimal transmittance of single-copy filter to reach
maximal squeezing.

Fig. 11). Displaced input state probability distribution with two peaks is spread by
universal two-copy recycling but relative concavity around the global maxima is con-
served. Both peaks of the recycled distribution still have the same height. Single-copy
filter is used to suppress one of the peaks and raise the other. The recycled distribution
then has smaller variance than vacuum state probability distribution of coordinate (see
Fig. 11).

To observe behavior for more complex distribution P (x), we consider attenuated
two-photon state as the input state again. Probability distribution of coordinate x is
given as

Pout(x) =
e−

x2

2 (8η (x2 − 2) + η2 (x4 − 12x2 + 12) + 8)
2

√
2π(η(15η(η(7η − 16) + 16)− 128) + 64)

(91)

after two-copy recycling. Variance is expressed as

V (x) =
η(η(3η(75η − 112) + 304) + 128) + 64

η(15η(η(7η − 16) + 16)− 128) + 64
. (92)

This state cannot exhibit squeezing and optional universal single-copy filter has to be
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Fig. 13: Two-copy universal recycling from two-photon state after single-copy Gaussian
filter extracting squeezing from central peak: (top) for η = 0.95, squeezed quadrature
probability distributions after filtration (full-thick) and before filtration (dashed-thick)
are compared to probability distributions of initial state (full-thin) and vacuum state
(dashed-thin). (Bottom-left) minimal variance VS (full-thick) is compared to mini-
mal variance extracted by single-copy non-universal recycling from single-photon state
(dashed-thick) and to vacuum noise (dashed-thin). (Bottom-right) Optimal transmit-
tance of single-copy filter to reach maximal squeezing.

applied. For η < 1
15

(
6−
√

6
)
≈ 0.24, probability distribution of two-photon state has

single-global maximum in the origin and state does not have to be displaced before the
filtration but in this case squeezing cannot be extracted even after the filtration. For
η > 0.24, probability distribution has two global maxima placed symmetrically around
the origin in points

xmaxin = ±

√
−
−5η +

√
2η(5η − 4) + 2 + 2

η
(93)

which are transformed by universal two-copy recycling to global maxima in points
xmaxout = ±

√
2 xmaxin . One of the global maxima is displaced to origin before or after

universal two-copy recycling and single-copy filtration is then applied. Filtered state
variance of quadrature x̂ has to be optimized numerically for parameter TG. Filtered
state exhibits squeezing for η > 1

2
like in the case of universal two-copy recycling from

single-photon state. Numerically optimized variance and optimal transmittance TG are
depicted in Fig. 12. Displaced input state probability distribution with three peaks is
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Fig. 14: Two-copy universal recycling from two-photon state after single-copy Gaussian
filter: (left) minimal variance in quadrature x̂ extractable from central peak (full-thick)
and from wing peak (dashed-thick) and vacuum noise (dashed-thin) are compared.
(Right) comparison between recyclable variance by two-copy universal recycling (full-
thick) and by single-copy universal recycling (dashed-thick) and vacuum noise (dashed-
thin) is shown.

spread by universal two-copy recycling and relative concavity around all three maxima
is conserved. Central local maximum is slightly suppressed but both side global maxima
are insignificantly raised. It is example how the filtration differently affects the local
and global maxima. Single-copy filter is used to raised wing peak in the origin and
suppress the others. The recycled distribution has smaller variance than vacuum state
probability distribution of coordinate (see Fig. 12). Squeezing is now recycled from
wing peak of the distribution.

Moreover for η > 1
15

(
6 +
√

6
)
≈ 0.56, probability distribution of two-photon state

has local maximum in the origin. Squeezing can be extracted from it after single-copy
filtration. Filtered state variance of quadrature x̂ have to be optimized numerically
for parameter TG again. Filtered state exhibits squeezing for η > 2

3
like in the case of

universal single-copy recycling from two-photon state. Numerically optimized variance
and optimal transmittance TG are depicted in Fig. 13. Evolution of probability distri-
bution depicted in Fig. 13 is very similar to the former case depicted in Fig. 12. The
only difference is that single-copy filter is used to raised central peak and suppress both
wing peaks. Squeezing is now recycled from central peak of the distribution.

We have to compare squeezing extracted from central and side maxima to reach
maximal squeezing for given η (see Fig. 14). For η > 0.85, squeezing recycled from
center maximum is better than from wing maximum and for η < 0.85 otherwise. Two-
copy universal recycling can extract more squeezing than single-copy one for every η > 1

2

(see Fig. 14).
In this section, properties of universal recycling from two input state copies were

demonstrated. Universal two-copy recycling from single-photon state can extract squeez-
ing unlike single-copy one but single-copy Gaussian filter is needed. If we use two-photon
state as input state, universal two-copy recycling can extract more squeezing than single-
copy one which suggest that extractable squeezing increase with number of input state
copies and it is motivation for multi-copy recycling discussed bellow.

30



5.2 Non-universal two-copy recycling

In the case of two-copy non-universal recycling, filtration function F (y, x̄) from Eq. (82)
is no longer fixed like in universal recycling and it is optimized over measured coordinate
x̄ for particular input state. Transformation does not conserve positions of local max-
ima. Single-copy Gaussian filter is not needed in this case because one peak probability
distribution can be extracted by filtration function F (y, x̄). The output distribution
P̃out(y|x̄) exhibits always global maximum if |x̄| increases, however, the distribution has
tendency to converge to vacuum state. We therefore have to optimize the choice of x̄
to reach minimal variance.

We again consider single-photon state as the input state. Recycled probability
distribution of coordinate x is given as

P (x|x̄) =
e−

x2

2

(
−2ηx2 (η (x̄2 + 2)− 2) + (η (x̄2 − 2) + 2)

2
+ η2x4

)
√

2π (η2 (x̄4 − 6x̄2 + 3) + 4η (x̄2 − 1) + 4)
(94)

and variance in x depicted in Fig. 15 is expressed as

VS(x̄) = 1 +
4η(2 + η − ηx̄2)

4 + η(3η − 4 + 2(2− 3η)x̄2 + ηx̄4)
. (95)

Fig. 15: Two-copy non-universal recycling from single-photon state: variance of
squeezed quadrature x̂ with highlighted optimal squeezing (full-thick line).

Selecting measured values from narrow interval around x̄opt =

√
1 +

2+
√

2
√

8−η(4+η)

η

is optimal. For η = 0.5 and η = 1, two-peak input state probability distribution is trans-
formed by optimal recycling to one-peak distribution which has smaller variance than
vacuum state probability distribution of coordinate (see Fig. 16). Evolution of proba-
bility distribution is difficult because of non-universality of Gaussian filter. Recycled
distribution always has dominant central peak in the origin because of the symmetric
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Fig. 16: Two-copy non-universal squeezing recycling from single-photon state: recycled
state probability distribution of squeezed quadrature (full-thick) for η = 0.5 (top-left)
and η = 1 (top-right) compared to input state probability distribution (dashed-thick)
and vacuum state probability distribution (full-thin). (Bottom-left) the variances VS of
squeezed quadrature for non-universal two-copy recycling (full-thick) and for universal
two-copy recycling (dashed-thick) and for non-universal single-copy recycling (full-thin)
are compared to vacuum noise (dashed-thin). (Bottom-Right) purity of the recycled
state (full-thick) compared to purity of input state (full-thin) and to purity of state
after single-copy recycling (dashed-thick).

interference of input state copies. For η > 0.92, the recycled distribution has two negli-
gible side peaks which vanish for smaller η and the recycled distribution then has single
peak. Variance in coordinate for optimal measurement reaches

VS =
5η − 8 +

√
2
√

8− η(4 + η)

(3η − 4)
. (96)

Probability distribution of squeezed quadrature after optimal recycling is depicted in
Fig. 16. Clearly, VS < 1 for any η > 0. For η = 1, we reach variance VS = 3−

√
6 ≈ 0.55

like in the case of single-copy recycling from two-photon state. For η = 0.5, the variance
increases to VS ≈ 0.84. From the Fig. 16(bottom-right), it is evident that two-copy
recycling produces more squeezing than single-copy method dominantly for η > 0.5, an
improvement for η ≤ 0.5 is rather moderate. For every η > 0, non-universal two-copy
recycling extracts more squeezing than universal one (see Fig. 16).

Heterodyne detection can be used instead of homodyne detection again. If we
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consider generally unbalanced heterodyne detection with transmittance T and post-
selecting measured values from narrow intervals around x̄ and p̄. Value p̄ = 0 is optimal
to reach squeezing in quadrature x̂ which can be verify numerically. If we measure
momentum very close to zero, variance in coordinate is expressed as

VS =

(
T
(
T (x̄2 − 2)

2 − 6x̄2 + 4
)
− 1
)
η2 + 4 (T x̄2 + 1) η + 4(

T 2 (x̄2 − 2)2 − 2T (x̄2 + 2) + 3
)
η2 + 4 (T x̄2 − 1) η + 4

(97)

which attain minimum for

x̄opt =

√
2 +

2− η +
√
η2(6− 8T ) + 8η(T − 2) + 16

ηT
. (98)

Global minimum of VS is in limit T → 0 which means very weak measurement of
coordinate. Variance then reads

VS = −
√

2
√

3η2 − 8η + 8 + η − 4

η
. (99)

Squeezing extracted by recycling with heterodyne detection is slightly better than
squeezing extracted by recycling with homodyne detection for every 0 < η < 1 (see
Fig. 17). This improvement comes from non-factorable form of Wigner function W (x, p)
6= W (x)W (p) of single-photon states. However, ideal projective measurement to super-
position α|0〉 + β|2〉 used for two-copy recycling extracts significantly more squeezing
than homodyne or heterodyne detection for every 0 < η < 1. It will be discussed in
detail in Section 7.5. Interestingly, extractable squeezing from pure single-photon state
is the same for all detectors discussed here and minimal squeezed quadrature variance
is still VS = 0.55.

We will discussed now other properties of state extracted by two-copy recycling with
homodyne detector. The interference of the single photons does not require phase sta-
bility, however, the phase-sensitive homodyne measurement determines the quadrature
where the squeezing can be observed. The complementary quadrature exhibits a noise
with the variance

VA =
32 + η(η2 − 24− η

√
2
√

8− η(4 + η))

(4− 3η)(8− η(4 + η))
(100)

being below VA = 2η + 1 of the initial state. Also here we observe the purification
effect, due to non-factorability of position and momentum in the Wigner function of
attenuated single-photon state (see Fig. 16).

Similarly as in the case of single-copy recycling measuring x̄ from finite interval is
used to count success probability PS which is equal to norm of the output probability
distribution N(x̄) given by formula Eq. (84). Measuring x̄ ∈ [x̄opt − δ, x̄opt + δ] is
optimal for two-copy recycling where x̄opt is given as optimal coordinate for measuring
values from narrow interval expressed above. Trade-off between VS versus PS compared
to single-copy recycling is depicted in Fig. 18. For η = 0.3, squeezing is reached
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Fig. 17: Two-copy recycling from single-photon state: squeezed quadrature variances of
state recycled by protocol with homodyne detector (full-thick) and heterodyne detector
(dashed-thick) and vacuum noise (dashed-thin) are compared.

if PS < 2.64%. For η = 0.5, squeezing is reached if PS < 10.75%. For η = 0.9,
squeezing is reached if PS < 24.60%. For two-copy recycling, squeezed quadrature
variance converges faster to limit value with decreasing success probability than for
single-copy recycling.
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Fig. 18: Single-copy (left) and two-copy (right) non-universal squeezing recycling suc-
cess probability versus achieved squeezing: the variance VS for η = 0.3 (dot-dashed-
thick) and for η = 0.5 (full-thick) and for η = 0.9 (dashed-thick) compared to vacuum
noise (dashed).

Two-photon state will be considered last time as the input state to visualize be-
havior for higher Fock states. Output state probability distribution of coordinate x
can always exhibit one peak character for x̄ large enough (see Fig. 19). Variance of
squeezed quadrature has to be minimize numerically. Optimal measured coordinate
x̄opt is depicted in Fig. 19. Two-peak input state probability distribution for η = 0.5
and three-peak input state probability distribution for η = 0.9 are transformed by op-
timal recycling to recycled distribution with dominant central peak which is narrower
than vacuum state probability distribution of coordinate (see Fig. 19). Evolution of
probability distribution through recycling is the same as in the case of non-universal
two-copy recycling from single-photon state depicted in Fig. 16. Non-universal two-
copy recycling can extract more squeezing than single-copy recycling for every η > 0
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Fig. 19: Two-copy non-universal squeezing recycling from two-photon state: recycled
state probability distribution of squeezed quadrature (full-thick) for η = 0.5 (top-left)
and η = 0.9 (top-right) compared to input state probability distribution (dashed-thick)
and vacuum state probability distribution (full-thin). (Bottom-left) the variances VS
of squeezed quadrature for two-copy non-universal recycling from two-photon state
(full-thick) and for two-copy non-universal recycling from single-photon state (dotted-
dashed-thick) and for two-copy universal recycling from two-photon state (dashed-thick)
and for single-copy non-universal recycling from two-photon state (full-thin) and for
vacuum state (dashed-thin) are compared. (Bottom-right) optimal measured coordinate
x̄opt for two-copy non-universal recycling from two-photon state.

(see Fig. 19). More squeezing can be extracted from two-photon state than from single-
photon state for every η > 0 (see Fig. 19). For η < 0.962, non-universal two-copy
recycling can extract more squeezing than universal one and for η > 0.962 otherwise
(see Fig. 19) like in the case of single-copy recycling which show that for two-photon
state with high purity universal protocols are better than non-universal ones.

Non-universal two-copy recycling can extract more squeezing than single-copy re-
cycling for every η > 0 and for both single-photon and two-photon states as the input
states. Moreover, non-universal two-copy recycling can extract more squeezing from
single-photon than universal one. In the case of two-photon state, situation is more
difficult and universal squeezing is better for states with high purity.
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6 Multi-copy Gaussian recycling

6.1 Tree-structure multi-copy Gaussian recycling

We have N = 2k, where k ∈ N, copies of input quantum state ρ̂in with the probability
distributions P (xi) of a generalized positions xi, where i = 1, . . . , N . Particularly,
attenuated single-photon states are taken as ρ̂in but the setup is general and it does not
matter on particular ρ̂in. Linear-optical implementation of general Gaussian recycling
protocol for quantum states of light is schematically depicted in Fig. 20.
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Fig. 20: Example of a linear optical tree-structure implementation of the non-universal
recycling of N = 2n wasted states with the probability distribution Pin(x) of the gener-
alized position: symmetric beam splitters with transmittance TBS = 0.5 and homodyne
detectors measuring coordinates x̄i, i = 1, . . . , n are used. Optional single-copy Gaus-
sian filter is composed of beam splitter with transmittance T and homodyne detector
measuring coordinate from narrow interval around x̄ = 0.

It is based on a network consisting from the symmetrical beam splitters (BS) and
projective measurement of the generalized coordinate x̄j, j = 1, . . . , k, which can be
represented by homodyne detectors for linear-optic implementation. On the symmetric
beam splitter two coordinates x1 and x2 are combined to produce coupled output co-
ordinates x′1 = (x1 + x2)/

√
2 and x′2 = (x2 − x1)/

√
2. Choice of measured coordinates

can be made to reach squeezing. Optimally, we can use single-copy quantum Gaussian
filters at the end of the protocol. This set up can be easily transformed to another ex-
perimental platform. We proved that heterodyne detection is producing slightly more
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squeezing than homodyne measurement. However, in the following calculations we use
only homodyne detection since it gives simpler analysis and generates almost optimal
amount of squeezing.

6.2 Linear-structure multi-copy Gaussian recycling

To reduce complexity of multi-mode interference effects exhibiting in the tree-structure
multi-copy recycling, we consider linear-structure multi-copy recycling which uses N ∈
N copies of input quantum state ρ̂in. Structure of this protocol is depicted in Fig 21.
Single-copy Gaussian filter is applied if state coordinate probability distribution has
multiple global maxima.
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Ρ
`

in
quantum
squeezing

optional
Gaussian filter

Fig. 21: Example of a linear optical linear-structure implementation of the non-universal
recycling of N = 2 states with the probability distribution Pin(x) of the generalized
position: beam splitters with transmittances Ti = i

i+1
and homodyne detectors mea-

suring coordinates x̄i, i = 1, . . . , N − 1 are used. Optional single-copy Gaussian filter
is composed of beam splitter with transmittance T and homodyne detector measuring
coordinate from narrow interval around x̄ = 0.

6.3 Universal multi-copy recycling

Universal recycling follows same recipe for every input state. It is therefore the method
to universally extracts squeezing from any state. Choice of measured values x̄j does not
depend on particular input probability distribution. For both multi-copy structures we
can implement universal recycling by considering x̄j = 0 [19]. Protocols combine N

copies into the output distribution Pout(x) ∝
[
Pin

(
x√
N

)]N
, which can be filtered by

single-copy filter to a distribution with the variance

VS =
Pin(xmax)

|P ′′in(xmax)|
, (101)

where xmax is a position of a global maximum of Pin(x). The initial displacement of
all the states is irrelevant for the variance Eq. (101), the output distribution will be
only shifted. If Pin(x) has single global maximum, then asymptotical variance directly
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Fig. 22: Variance VS produced by universal recycling as a function of η (full line)
compared to vacuum noise (dashed line).

approaches VS. If the distribution Pin(x) has optionally more than single global maxi-
mum, the variance of Pout(x) can be still very large. The variance VS can be approached
if the single-copy filtration depicted in the Fig. 21 is applied to isolate a single global
maximum. Moreover, the relative concavity defined as

P ′′(x)

P(x)
(102)

in the point of global maximum of probability distribution is invariant of universal
recycling [19]. It means than relative concavity in the point of global maximum of
probability distribution is the same after each universal step in multi-copy recycling.
From Ref. [19], for attenuated single-photon state with η < 1

3
the universal recycling

produce state with variance

VS =
1− η
|3η − 1|

≥ 1. (103)

For η > 1
3
, single-photon state has two global maxima. If one of the global maxima is

shifted to origin and universal single-copy recycling is applied after universal recycling,
minimal variance reads

VS =
η

|3η − 1|
. (104)

Formulas Eq. (103) and Eq. (104) can be derived from (101) and they are numerically
verified for large N . Squeezing is reached only for η > 1

2
. The squeezing is limited

and for the non-classical states with positive Wigner function is not achievable. The
variance VS from Eq. (103) and Eq. (104) is depicted in Fig. 22. To demonstrate
properties of this method marginal probability density P (x) before and after single-
copy filtration is depicted in Fig. 23 (top). At first, two-peak input state probability
distribution is spread by universal recycling but relative concavity near both global
maxima is conserved. Both global maxima still have the same height. Single-copy
filter is then used to suppress the peak far from the origin and raised the one in the
origin. Recycled probability distribution is narrower than vacuum state probability
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Fig. 23: Universal multi-copy squeezing recycling from displaced single-photon state
with optional universal single-copy filter with transmittance T . (Top) for η = 0.9:
initial displaced state (dashed-thick), recycled state for N = 32 before single-copy
filtration (full-thick) and after single-copy filtration for T = 0.912 (full-thin) compared
to vacuum state (dashed-thin). (Bottom) variance VS of squeezing as the function of
transmittance of beam splitter and number of copies N = 32: after recycling η = 0.9
(full-thick), prediction of formula Eq. (104) (full-thin), after recycling η = 0.5 (dashed-
thick), variance of vacuum noise (dashed-thin).

distribution of coordinate. Variance after universal recycling and universal single-copy
filtration is compared to Eq. (104) in Fig. 23 (bottom).

Similarly as for recycling from two copies squeezing can be extracted for universal
multi-copy recycling but only in combination with single-copy Gaussian filter where
transmittance T have to be optimized. Moreover, squeezing is reachable just for η > 0.5
in contrast to any non-universal method discussed above which can extract squeezing
for every η > 0. Minimal variance extractable from pure single-photon state is just
VS = 0.5. There is still need for seeking better recycling strategies.
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6.4 Single-layer partially-universal multi-copy recycling

Before fully non-universal recycling partially-universal Gaussian recycling is analyzed.
Our main motivation is to realize from how can non-universal method extract squeezing
differently to universal one. Partially-universal method use tree-structure protocol (see
Fig. 20) with optimized non-zero measured position x̄1 in first layer followed by the
universal part with all others values x̄2, . . . , x̄n = 0. For the output distribution

Pout(x|x̄) ∝

[
Pin

(
x/
√
M − x̄1√

2

)
Pin

(
x/
√
M + x̄1√

2

)]M
, (105)

where M = N/2 is number of copies entering the universal part of the recycling. The
achievable variance for limit of large number of input state copies can be derived from
Eq. (105) and expressed as

1

VS(x̄1)
=

d2

dx2

[
Pin

(
x−x̄1√

2

)
Pin

(
x+x̄1√

2

)]
x=x′max

Pin

(
x−x̄1√

2

)
x=xmax

Pin

(
x+x̄1√

2

)
x=xmax

, (106)

where xmax is position of global maximum of the distribution

P1(x|x̄1) ∝ Pin

(
x− x̄1√

2

)
Pin

(
x+ x̄1√

2

)
(107)

after first non-universal layer of the recycling and x̄1 is optimized. The recycled variance
VS(x̄1) can be further given as

1

VS(x̄1)
=

1

2

∣∣∣∣∣ P ′′in(y)

Pin(y)

∣∣∣∣
y=

xmax+x̄1√
2

+
P ′′in(y)

Pin(y)

∣∣∣∣
y=

xmax−x̄1√
2

+

2
P ′in(y)

Pin(y)

∣∣∣∣
y=

xmax+x̄1√
2

P ′in(y)

Pin(y)

∣∣∣∣
y=

xmax−x̄1√
2

∣∣∣∣∣ . (108)

The reachable variance after the universal part recycling does not depend on the dis-
placement of distribution Pin(x) for the limit of large number of copies.

We can consider that global maximum of the distributions P1(x|x̄1) before the uni-
versal recycling is shifted to the origin and then we simply get xmax = 0. The formula
Eq. (108) is then simplified. Global maximum of the distribution remains in origin after
universal procedure and in the case of multiple global maxima the universal single-copy
filtration can be used to extract the single peak and reach the minimal variance ex-
pressed as

1

VS(x̄1)
=

1

2

∣∣∣∣∣ P ′′in(y)

Pin(y)

∣∣∣∣
y=

x̄1√
2

+
P ′′in(y)

Pin(y)

∣∣∣∣
y=− x̄1√

2

+

2

(
P ′in(y)

Pin(y)

∣∣∣∣
y=

x̄1√
2

)(
P ′in(y)

Pin(y)

∣∣∣∣
y=− x̄1√

2

)∣∣∣∣∣ . (109)
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Fig. 24: Variance of squeezed coordinate after single-layer partially-universal multi-copy
recycling from single-photon state for global maximum in origin after first non-universal
layer given by Eq. (113). Full thick line shows optimal measurement.

The variance VS(x̄1) is achieved from an average of the relative concavity
P ′′in(y)

Pin(y)
in

points ± x̄1√
2

and the product of the relative steepness
P ′in(y)

Pin(y)
taken in that points ± x̄1√

2
.

For the universal Gaussian recycling, the relative concavity has been only the resource
of squeezing. The signs of relative concavity and relative steepness strongly depend on
the choice of x̄. Note, relative concavity and relative steepness are features of input state
distribution on the other hand global maximum position xmax is feature of distribution
of the state after first non-universal layer. We newly extract the non-classicality hidden
in a relatively steepness of Pin(x) distribution, by using the partially-universal approach.

If attenuated single-photon state is used as ρ̂in, state with density probability dis-
tribution in coordinate x

P1(x|x̄1) =
e−

x2

2

(
η2x4 + (4η − 4η2 − 2η2x̄2

1)x2 + (2− 2η + ηx̄2
1)

2
)

√
2π (η2x̄4

1 + (−6η2 + 4η) x̄2
1 + 3η2 − 4η + 4)

is reached after first non-universal layer. Distribution multi-peak structure appearing
for η > 1

3
is vanishing by increasing x̄1. For x̄1 →∞, the distribution converges to the

vacuum state. To apply Eq. (109), the parameter x̄1 has to be therefore chosen that the
global maximum will appear in the origin, not in the wings of the distribution. Higher
squeezing can be recycled from maximum in the origin than from side maxima even
if side maximum is shifted to origin and universal single-copy filter is applied. Local
maximum

P1(0) =
1

4
exp

(
− x̄

2
1

2

)(
2 + η(x̄2

1 − 2)
)2

(110)
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in the origin x = 0 has to be higher than maxima

P1(x′max) = 2 exp

1

η
− x̄2

1 − 2−

√
1− 2(1− η)x̄2

1

η

×
η2

1 +

√
1− 2(1− η)x̄2

1

η

 (111)

in the points ±x′max satisfying

x
′2
max = 4− 2

η
+ x̄2

1 + 2

√
1− 2(1− η)x̄2

1

η
. (112)

For 1
3
≤ η ≤ 2

7
(3 −

√
2) ≈ 0.45, x̄1 is lower bounded by x̄2

min = 2
√

4−3η
η
− 2

η
. For

η > 2
7
(3 −

√
2), lower bound x̄min is given by cross-section of the formulas Eq. (110)

and Eq. (111) and numerical solution is depicted in Fig. 28 (top-right). Within that
interval, x̄1 is optimized to reach minimal VS(x̄1). For η = 0.9, we need x̄1 > 1.01, for
η = 0.5, we require x̄1 > 0.7 to have single global maximum (in the origin) and use
Eq. (109). For x̄1 > x̄min, the variance (see Fig. 24) approaches

VS(x̄1) =
(2 + η(x̄2

1 − 2))2

4 + 4η(x̄2
1 − 4) + η2(x̄4

1 + 12)
. (113)

If the value, of x̄1 =
√

6(1−η)
η

for which the minimum of Eq. (113) is achieved, lies in

〈x̄min,∞) (see Fig. 28), the variance VS can reach

VS =
4− 4η

4− 3η
. (114)

For η = 0.3, depicted in Fig. 25, the lowest variance VS(x̄1) = 0.903 is approached
for x̄1 =

√
14 ≈ 3.742. For η = 0.5, the lowest variance VS(x̄1) = 4

5
is approached

for x̄1 =
√

6 ≈ 2.45. For η = 0.9, corresponding to the Fig. 26, we could reach
VS(x̄opt) = 0.308 from Eq. (113) but only for x̄1 = 0.816 which is, however, below
x̄min = 1.01. For the threshold value x̄1 = 1.01, we can reach VS = 0.326, which is
fully corresponding to numerical results. For η = 1, we could reach variance VS(x̄1)
arbitrary small as x̄1 decreases, but we are limited by x̄min = 1.055, which corresponds

to VS = 0.218. When optimal measured position x̄1 =
√

6(1−η)
η

lies in area where P1 has

central global maxima the squeezing recycled by nearly optimal method is the same as
squeezing obtained from global optimization over all measured positions which will be
analyzed later. Maximal value of η when it is satisfied can be reach as cross-section of

optimal position x̄1 =
√

6(1−η)
η

and boundary values which are depicted in Fig. 28. The

maximal value is η = 0.86.
Development of probability distribution is depicted in Fig. 25 and Fig. 26. For

η = 0.3, probability distributions after first layer for x̄1 = 0 and for optimal x̄1 = 2.55
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are compared to vacuum noise probability distribution in Fig. 25 (top-left). Distribu-
tions after four other universal layers are compared again to vacuum noise probability
distribution in Fig. 25 (top-right). For x̄1 = 0, all layers are universal and single-peak
distribution is just spread and single peak is suppressed. However, for x̄1 = 2.55, distri-
bution is raised and narrower than vacuum-state distribution even after first layer and
the distribution is moderately raised by other universal layers. Similarly for η = 0.9,
probability distributions after first layer for x̄1 = 0 and for optimal x̄1 = 2.55 are com-
pared to vacuum noise probability distribution in Fig. 26 (top-left). Distributions after
four other universal layers are compared again to vacuum noise probability distribu-
tion in Fig. 26 (top-right). For x̄1 = 0, all layers are universal. The distribution still
has two-peaks of the same height and the same relative concavity and the distribution
is just spread. For x̄1 = 1.2, distribution after first layer has one central peak and
two smaller wing peaks. Subsequent universal layers suppresses the wing peaks and
raises the central peak. Final distribution is narrower than vacuum-state probability
distribution.
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Fig. 25: Nearly optimal non-universal multi-copy squeezing recycling from single-photon
state for η = 0.3. (Top-Left) after first non-universal two-copy recycling and before uni-
versal multi-copy recycling M = 1: x̄1 = 0 (full-thin), optimal x̄1 = 3.742 (full-thick),
vacuum state (dashed-thick). (Top-Right) after nearly optimal recycling M = 16:
x̄1 = 0 (full-thin), optimal x̄1 = 2.45 (full-thick), vacuum (dashed-thick). (Bottom)
recycled variance VS: optimal two-copy (M = 1) non-universal recycling (full-thin),
nearly optimal multi-copy recycling for M = 16 (full-thick), asymptotical nearly opti-
mal multi-copy recycling for M →∞ (dashed-thick).
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Fig. 26: Nearly optimal non-universal multi-copy squeezing recycling from single-photon
state for η = 0.9. (Top-Left) after first non-universal two-copy recycling and before
universal multi-copy recycling M = 1: x̄1 = 0 (full-thin), x̄1 = 1.2 (full-thick), vacuum
state (dashed-thick). (Top-Right) after nearly optimal recycling M = 16: x̄1 = 0
(full-thin), x̄1 = 1.2 (full-thick), vacuum (dashed-thick). (Bottom) recycled variance
VS: optimal two-copy (M = 1) non-universal recycling (full-thin), nearly optimal multi-
copy recycling for M = 16 (full-thick), asymptotical nearly optimal multi-copy recycling
for M →∞ (dashed-thick).
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Fig. 27: Nearly optimal non-universal multi-copy squeezing recycling from single-photon
state: Numerical values of minimal variance VS for η = 0.3 (left) and η = 1 (right) fitted
by rational function and compared to theoretical limits (dashed-thin).
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Fig. 28: (Top-left) formula Eq. (109) is valid in area above the dashed-thin line. Optimal
position in dependence of η (full-thick). Relative concavity is equal to zero for x̄1 lying
on full-thin line. (Top-right) variance reached just from relative steepness (dashed-
thick) compared to minimal reachable variance (full-thick) and to vacuum noise variance
(dashed-thin). (Bottom-left) sum of relative concavity and relative non-stationarity for
η = 0.2 (dashed-thin) and for η = 0.4 (full-thin) and for η = 0.6 (dashed-thick) and for
η = 0.8 (full-thick). (Bottom-right) dependence of success probability PS of optimal
measurement on η for N = 8 and for m = 1 (full line) and for m = 2 (dashed line) and
for m = 3 (dot-dashed line).

If x̄1 ≤ x̄min then the equal symmetrical maxima on the sides are global maxima
and the universal recycling separates them and concentrates the distribution around
them. We need to shift one of the maxima to origin and apply the universal single-copy
filtration after the nearly optimal recycling to filter-out only single peak. We can use
formula Eq. (108) with x

′
max given by Eq. (112) to calculate the minimal variance

VS(x̄1) =

η

(
1 +

√
1− 2(1−η)x̄2

1

η

)
∣∣∣∣4x̄2

1(1− η)− 2η + (2− 4η − ηx̄2
1)
√

1− 2(1−η)x̄2
1

η

∣∣∣∣ (115)

achievable after the optimized single-copy filtration. However, we can numerically verify
that VS from Eq. (115) with x̄1 ∈ 〈0, x̄min〉 is always larger than VS from Eq. (113) with
x̄1 ∈ 〈x̄min,∞), as is visible from Fig. 26 (for η = 0.9).
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Fig. 29: Partially-universal multi-copy squeezing recycling from single-photon state for
η = 0.3 with non-universal last layer. (Left) probability distribution of coordinate:
after 5 universal layers and before last non-universal layer (dashed-thick), after 6th
non-universal layer for optimal measured coordinate (full-thick), input state (full-thin)
and vacuum (dashed-thin). (Right) variance of the squeezed coordinate for N = 32
in dependence of measured position for measuring in the last layer (full-thick) and for
measuring in the first layer (dashed-thick) compared to vacuum noise (full-thin).

The relative concavity can vanish for some points ± x̄1√
2
, then the squeezing is

achieved just from the relative steepness and the partially-universal recycling goes com-
pletely beyond the universal one. More often, combination of relative concavity and
relative steepness is used to reach maximal squeezing. Relative concavity is equal to
zero for

x̄1 =

√√
24η2 − 8η + 1 + 6η − 1

η

and squeezing is generated just from relative steepness. Variance achievable just from
steepness is compared to minimal reachable variance for partially-universal multi-copy
recycling in Fig. 28 (top-right). For η = 1

15
(10−

√
10) ≈ 0.45, overall minimal variance

is achieved just from the steepness.
In summary, the nearly optimal recycling uses x̄1 ∈ 〈x̄min,∞) and minimal ex-

tractable variance is determined by the formula Eq. (113). For η < 0.86, minimal

variance reachable for x̄1 =
√

6(1−η)
η

coincides with fully non-universal recycling. For

η > 0.86, maximum squeezing is achieved for x̄1 = xmin and the protocol reaches just
nearly optimal result because fully non-universal recycling extract higher squeezing.

Other remarkable fact is that it does not matter which measured position is non-
zero. Minimal variance is still the same. Final state recycled from N copies with
non-zero measured position in mth layer has probability density function

Pm(x|x̄m) ∝
[
Pin

(
x̄m√
2m

+
x√
N

)
Pin

(
x̄m√
2m
− x√

N

)]N/2
. (116)

Final states are almost the same. Only difference is in scaling of x̄ which causes just
decreasing of success probability of optimal measurement with increasing m. In Fig.

46



28(bottom-right) is depicted dependence of success probability on m. For η = 0.3,
proses is shown in Fig. 29 where each universal layer spreads the single-peak input
distribution and as it is wider it is closer to Gaussian distribution. Despite to process
of Gaussification, we can still extract squeezing after finite number of universal layers by
applying non-universal layer which raises the global maximum in the origin and makes
the distribution narrower than vacuum-state probability distribution of coordinate. For
N = 64, optimal measured position for m = 1 is x̄1,opt = 3.764 and for m = 6 is x̄6,opt =
21.294. In both cases same variance VS = 0.904 is reached and optimal measured
coordinates satisfy formula x̄m,opt/x̄n,opt =

√
2m−n. Particularly, x̄6,opt/x̄1,opt =

√
25.

Single-layer partially-universal multi-copy recycling extracts better squeezing than
single-copy and two-copy recycling and than universal multi-copy recycling. For η <
0.86, this method is optimal for all measured coordinate optimization. For input states
with higher purity, single-layer multi-copy recycling reaches just nearly optimal squeez-
ing.

6.5 Multi-layer partially-universal multi-copy recycling

The partially-universal protocol can be further extend to more non-universal layers in
the tree-structure scheme. Non-universal part is again followed by multi-copy universal
recycling.
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Fig. 30: Probability distribution of coordinate of state after two non-universal layers
for x̄1 = 1.2 and x̄2 = 0.9 and η = 1.

For the distribution with global maximum shifted to the origin after k non-universal
layers, the universal recycling finally achieves the squeezed variance given by

1

VS
=

1

2k

∣∣∣∣∣
k∑
i=1

P ′′in(yi)

P (yi)
+
P ′in(yi)

P (yi)

P ′in(−yi)
P (−yi)

∣∣∣∣∣ (117)

where yi represents all different combinations
∑k

j=1±
x̄j

2
j
2

over all possible signs ±. The

formula Eq. (117) is valid for any distribution, because the global maximum can be
always displaced to the origin. If it is done before the universal recycling, it does not
change the asymptotically reachable squeezing. Because global maxima change with
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x̄j, it produce multiple minima of the variance, which all have to be compared. In
formula Eq. (117) can be seen, that for multi-layer partial non-universal recycling, the
squeezing is still extracted from the relative concavity and the relative steepness.

For two non-universal layers, achievable variance from pure state according to for-
mula Eq. (117) is VS = 0.127 for measured coordinates x̄1 = 1.2 and x̄2 = 0.9, which is
higher squeezing than for single-layer partially-universal method with extractable vari-
ance VS = 0.218 from pure single-photon state. Corresponding probability distribution
of coordinate of state after optimal two non-universal layers and before next universal
part of recycling is depicted in Fig. 30.

Multi-layer partially-universal multi-copy recycling can extract more squeezing than
single-layer method attenuated single-photon state with η > 0.86. On the other hand,
the multi-copy method is more difficult to optimization and cannot reach better squeez-
ing for η < 0.86.

6.6 Non-universal multi-copy recycling

Fully non-universal multi-copy recycling can be numerically analyzed for small number
of input copies N , but for large N the situation is too complex and many parameters
have to be optimized. It is impossible to analytically predict achievable variance for
large N and uncover all generic features which determines extractable squeezing.

Two structures are studied for resource of N single-photon states. For tree structure,
measured coordinates are the same in the same level of tree-structure scheme so n =
log2N measured coordinates have to be optimized. It means that number of parameters
increases logarithmically which is the advantage of this structure. Variance of the the
final state has to be numerically minimized. Minimal variance VS as the function of η is
depicted in Fig. 31. Tree-structure recycling can reach better squeezing than single-copy
and two-copy recycling. Simple non-universal single-copy Gaussian recycling is still very
efficient for the states with η ≤ 0.5, for states with positive Wigner function. For η >
0.86, limit value for infinite number of copies remains unanswered. For N = 16, we can
reach variance VS = 0.136 for pure single-photon state. Optimal recycling again extracts
squeezed one-peak probability distribution from two-peak input probability distribution
(see Fig. 31 top-left). Recycled distribution is symmetrically placed around origin
because of symmetric interference on every beam splitter. Development of distribution
through recycling is nontrivial because complicated non-universal protocol of recycling
is followed.

Minimal reachable variance dependence on number of copies depicted in Fig. 31
(bottom-left) suggests that arbitrary high squeezing can be achieved for infinite number
of copies but we cannot compute optimal variance for more copies. Numerical results
are fitted by linear rational function with limit VS = 0.00546 for N → ∞. Numerical
comparison between single-layer partially-universal and fully non-universal protocols
are depicted in Fig. 31 (bottom-right). The improvement is evident for η = 1, however,
for η ≤ 0.9 the improvement is temperate. From comparison can be seen a nearly
optimal character of the single-layer partially-universal method, which well responds to
fully non-universal method for η < 0.9.

For the linear-structure optimal scheme is when transmittance in successive step is

48



-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0.1

0.2

0.3

0.4

0.5
PHxL

0 0.2 0.4 0.6 0.8 1
Η

0.2

0.4

0.6

0.8

1
VS

0 10 20 30 40 50
N

0.1

0.2

0.3

0.4

0.5

VS

0.7 0.75 0.8 0.85 0.9 0.95 1
Η

0.2

0.4

0.6

0.8
VS

Fig. 31: Non-Universal multi-copy tree-structure squeezing recycling from single-photon
state. (Top-left) final state (full-thick) recycled state from 8 input states for η = 0.9
(full-thin) compared to vacuum state (dashed-thin). (Top-right) variance of final state
for 4 (dashed-thick) and 8 (full-thick) input states compared to single-copy (dashed-
thin) and two-copy (full-thin) recycling. (Bottom-left) minimal reachable variance in
dependence on number of input state copies fitted by linear rational function. (Bottom-
right) comparison between partially-universal and full non-universal multi-copy method:
variance of squeezed quadrature for N = 4 partially-universal (full-thin) and full non-
universal (dashed-thin) and for N = 8 partially-universal (full-thick) and full non-
universal (dashed-thick).

given by Ti = i
i+1

. Number of detectors increases linearly with increasing number of
input states. Number of measured coordinates, which we have to optimize, increases
linearly, too. This is disadvantage of linear structure. Variance of the the final state have
to be minimized numerically. Minimal variance VS as the function of η is depicted in
Fig. 32. Linear-structure recycling can reach better squeezing than two-copy recycling.
Both structures give the same squeezing for N = 4 for every η which suggests that both
structures reach same squeezing for given number of copies of input state. For linear
structure, number of parameters increases very fast so we cannot analyze more than
five input state copies.
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Fig. 32: Non-universal multi-copy linear-structure squeezing recycling from single-
photon state. Variance of final state for 3 (dot-dashed-thick) and 4 (dashed-thick)
and 5 (full-thick) initial states compared to two-copy recycling (dashed-thin) and tree-
structure recycling with 4 (dashed-thick) and 8 (full-thin) initial states.

In conclusion, tree structure is better than linear structure because of less parame-
ters which have to be optimized for given number of input states. Moreover, partially-
universal protocol was involved and for tree-structure protocol and it allowed us to
analyze very good estimation of fully non-universal multi-copy recycling which is very
complex problem. We can determine limit of infinite number of input state copies for
single-layer partially-universal multi-copy recycling in contrast to fully non-universal
one where we can analyze output state only for small number of input state copies.
Minimal squeezed state variance recycled from large number of pure single-photon state
copies was not determined because it is problem of minimization of high degree poly-
nomial of many variables. It suggests that very high squeezing might be reached but
there is not enough data for good estimation.
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7 Non-Gaussian detectors

It is interesting to know if quantum recycling can be achieved without homodyne de-
tector, using only coherently displaced avalanche photodiode working as a threshold
detector. It is actually non-Gaussian detector. Now we will consider threshold detector
as an extension for two basic recycling protocols which are single-copy and two-copy
recycling. Moreover we will consider ideal non-Gaussian projective measurement to
determine maximal squeezing extractable by these two protocols based on linear optics
with arbitrary detector.

7.1 Threshold detectors

Alternatively to homodyne detection, if it is not available, we can use another detector in
combination with coherent displacement. Threshold detector described by the POVM
component 1−|0〉〈0| can be used. Measurement with that detector is no longer Gaussian
operation. Protocols for one and two input state copies are depicted in Fig. 33. This
detector is many cases more feasible than homodyne detection. However, inefficiency
of this detector is serious problem, therefore it has to be analyzed.
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Fig. 33: Schemes for single-copy (left) and two-copy (right) recycling with non-Gaussian
measurement 1−|0〉〈0| and coherent displacement D. Beam splitter with transmittance
T is used for interference of the input states.

Both single-photon state and vacuum state are phase insensitive as well as beam
splitter and threshold detector so the displacement can be applied just in quadrature x̂.
To describe these measurement we need whole input state Wigner function Win(x, p) in
contrast to homodyne detection where coordinate probability density is enough. Input
state is at first tapped on beam splitter which is described by substitution

x =
√
Tx′ −

√
1− Tx′0, p =

√
Tp′ −

√
1− Tp′0,

x0 =
√
Tx′0 +

√
1− Tx′, p0 =

√
Tp′0 +

√
1− Tp′, (118)

then displacement is applied on tapped mode which can be expressed by substitution
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x′0 = x′′0 −D and p′0 = p′′0. Joint distribution is given as

WD(x′, p′, x′′0, p
′′
0) ∝ Win(

√
Tx′ −

√
1− Tx′0 +

√
1− TD,

√
Tp′ −

√
1− Tp′0)×

WA(
√
Tx′0 +

√
1− Tx′ −

√
TD,
√
Tp′0 +

√
Tp′0) (119)

where WA is either Wigner function W0 of vacuum state for single-copy scheme or input
state Wigner function for two-copy scheme. We consider imperfect detectors with de-
tection inefficiencies. It can be described as additional beam splitter with transmittance
ηL placed before the detector. It is again describe by transformation

x′′0 =
√
ηLx̃0 −

√
1− ηLx′L, p′′0 =

√
ηLp̃0 −

√
1− ηLp′L,

xL =
√
ηLx

′
L +

√
1− ηLx̃0, pL =

√
ηLp

′
L +

√
1− ηLp̃0. (120)

Wigner function is then expressed as

WL(x′, p′, x̃0, p̃0) ∝∫ ∞
−∞

dx′L

∫ ∞
−∞

dp′L WD(x′, p′,
√
ηLx̃0 −

√
1− ηLx′L,

√
ηLp̃0 −

√
1− ηLp′L)×

W0(
√
ηLx

′
L +

√
1− ηLx̃0,

√
ηLp

′
L +

√
1− ηLp̃0). (121)

Finally, threshold detector is applied on tapped mode to reach output Wigner function

Wout ∝
∫ ∞
−∞

dx̃0

∫ ∞
−∞

dp̃0 WL(x′, p′, x̃0, p̃0) (1−W0(x̃0, p̃0)) . (122)

Derived formulas will be discussed now for particular cases.

7.2 Single-copy non-Gaussian recycling with threshold detec-
tor

Wigner function WA is now represented by vacuum state Wigner function W0 and
attenuated single-photon state is used as input state. Final Wigner function, probability
distribution of quadratures and their variances can still be computed analytically but
results are too complicated to show them here. Optimization of parameters to reach
maximal squeezing have to be performed numerically.

Squeezing is observed in quadrature x̂ which was displaced. In limit T → 1 and
D → 0, we can reach the same minimal variance VS = 1− η

4
for the threshold detector

as for the homodyne detection. Moreover, the reachable variance does not depend on
detector losses, because in that limit influence of detector losses vanishes. For η = 0.5
and η = 0.9, probability distributions of squeezed and anti-squeezed quadrature after
optimal displacement are depicted in Fig. 36. Single-peak distribution narrower than
coherent state coordinate distribution can be recycled again. Although the evolution
of probability distributions is carried by evolution of whole Wigner function, recycled
distributions is very similar to the case of single-copy non-universal recycling with ho-
modyne detection. But the mechanism of extraction is nontrivial because whole Wigner
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Fig. 34: Single-copy non-Gaussian recycling for T = 0.99 and ηL = 0.5 and optimal
displacement: recycled state probability distribution of squeezed quadrature (full-thick)
and anti-squeezed quadrature (dashed-thick) for η = 0.5 (left) and η = 0.9 (right) are
compared to coherent state probability distribution (full-thin).

function have to be carried in contrast to single-copy recycling with homodyne detec-
tion. For η = 0.5 and T = 0.99, optimal displacement is d = 0.082 and corresponding
variance is VS = 0.876 which is close to limit variance VS = 0.875. The influence of
losses ηL is very moderate. In whole range ηL ∈ (0, 1) variance VS differs just on fourth
fractional digit. For η = 0.9 and T = 0.99, optimal displacement is d = 0.11 and
corresponding variance is VS = 0.777 which is again close to limit variance VS = 0.775.
Dependence of variance VS on ηL is very similar to the case for η = 0.5.

For single-copy non-Gaussian recycling, the same squeezing can be extracted as for
Gaussian one. Actually, it is a maximum of squeezing extractable from the attenuated
single-photon state by linear optical tap and arbitrary measurement, as will be proved
in Section 7.4. Threshold detector is a good substitution for homodyne detector in
that protocol. We do not require photon-number resolving detector to reach optimal
performance. Moreover, influence of detector losses on extractable variance is very
moderate for optimal measurement.

7.3 Two-copy non-Gaussian recycling with threshold detector

For two-copy protocol, Wigner function WA is represented by input state Wigner func-
tion Win and input state is single-photon state again. For this protocol, squeezing
cannot be extracted. We have to consider more difficult scheme with two threshold
detectors depicted in Fig. 35 and non-symmetrical interference of input state copies in
contrast to other two-copy recycling protocols where symmetrical interference is opti-
mal.

We have to split ancillary mode of state described by Wigner functionWL(x′, p′, x̃0, p̃0)
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Fig. 35: Schemes of two-copy recycling with two threshold detectors 1 − |0〉〈0| and
coherent displacement D. Beam splitter with transmittance T is used for interference
of the input states. And symmetric beam splitter with transmittance T̃ = 0.5 are
applied on measured mode and two threshold detectors is then applied.

on symmetrical beam splitter. It can be described by substitution

x̃0 =
x̃1 − x̃2√

2
, p̃0 =

p̃1 − p̃2√
2

,

x̃ =
x̃2 + x̃1√

2
, p̃ =

p̃2 + p̃1√
2

. (123)

Wigner function then reads

WB(x′, p′, x̃1, p̃1, x̃2, x̃2) ∝ WL(x′, p′,
x̃1 − x̃2√

2
,
p̃1 − p̃2√

2
)W0(

x̃2 + x̃1√
2

,
p̃2 + p̃1√

2
), (124)

where W0 is vacuum state Wigner function. Than we apply threshold detector on
both ancillary modes. Output state Wigner function is expressed as

Wout ∝
∫ ∞
−∞

dx̃1

∫ ∞
−∞

dp̃1

∫ ∞
−∞

dx̃2

∫ ∞
−∞

dp̃2 WB(x′, p′, x̃1, p̃1, x̃2, x̃2)×

(1−W0(x̃1, x̃1)) (1−W0(x̃2, x̃2)) . (125)

We use single-photon state again as input state. Formulas for output state Wigner
function and variances in quadratures are to complicated to show them here. State
exhibits squeezing in quadrature x̂ which was displaced. Minimization of its variance
has to be performed numerically. The optimal measurement is in limit T → 1 and
D → 0. Limit T → 0 is optimal as well because of the symmetry of input states.
Minimal squeezed quadrature variance reads VS = 1− η

4
which is the same result as for

single-copy recycling but it is worse than reachable squeezed quadrature variance by
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two-copy recycling with homodyne detector. For optimal limit measurement, reachable
variance does not depend on detectors losses because influence of losses vanished in
that limit. Difference between output states after single-copy recycling with threshold
detector and two-copy recycling with two threshold detectors is very slight and the
difference vanishes in limit T → 1 and D → 0. For η = 0.5 and η = 0.9, probability
distributions of squeezed and anti-squeezed quadrature after optimal displacement are
depicted in Fig.36. One-peak distribution narrower than coherent state coordinate
distribution can be recycled again. Although the evolution of probability distributions
is carried by evolution of whole Wigner function, recycled distributions are very similar
as in the case of single-copy non-universal recycling with homodyne detection.
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Fig. 36: Two-copy non-Gaussian recycling for T = 0.99 and ηL = 0.5 and optimal
displacement: recycled state probability distribution of squeezed quadrature (full-thick)
and anti-squeezed quadrature (dashed-thick) for η = 0.5 (left) and η = 0.9 (right) are
compared to coherent state probability distribution (full-thin).

For η = 0.5 and T = 0.99, optimal displacement is d = 0.082 and corresponding
variance is VS = 0.877 which is close to limit variance VS = 0.875. The influence of
losses ηL is very moderate. In whole range ηL ∈ (0, 1) variance VS differs just on fourth
fractional digit. For η = 0.9 and T = 0.99, optimal displacement is d = 0.11 and
corresponding variance is VS = 0.78 which is again close to limit variance VS = 0.775.
Dependence of variance VS on ηL is very similar to the case for η = 0.5 and in whole
range ηL ∈ (0, 1). Variance VS differs just on third fractional digit.

For two-copy recycling, threshold detector is not effective. It extracts less squeez-
ing than recycling with homodyne detection and the extracted squeezing is same as
squeezing extracted by single-copy recycling for every η. This imply that two threshold
detectors in combination with displacement do not work like projection to superposition
α|0〉+ β|2〉 because these projective measurement extract significantly more squeezing.
Optimal projective measurement is required to extract more squeezing as it will be
shown in next two sections.
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7.4 Optimal single-copy recycling with projective measure-
ment

Now we will consider optimal projective measurement of attenuated single-photon state.
Single-photon state is tapped on beam splitter and projective measurement on super-
position α|0〉+β|1〉, where |α|2 + |β|2 = 1, is applied on tapped mode. Two-mode input
state density matrix reads

ρ̂in = η|10〉AB〈10|+ (1− η)|00〉AB〈00|. (126)

After coupling on beam splitter with transmittance T , density matrix is transformed
to

ρ̂BS = ηT |10〉AB〈10|+ η(1− T )|01〉AB〈01|+ η
√
T (1− T )|10〉AB〈01|+

η
√
T (1− T )|01〉AB〈10|+ (1− η)|00〉AB〈00|. (127)

Projective measurement on state |ψ〉B = α|0〉B + β|1〉B is used on tapped mode B.
Density matrix is proportional then to

ρ̂ψ ∝ TrB [ρ̂BS|ψ〉B〈ψ|] = 〈ψ|Bρ̂BS|ψ〉B =

η
(
|α|2T |1〉A〈1|+ α∗β

√
T (1− T )|1〉A〈0|+ αβ∗

√
T (1− T )|0〉A〈1|

)
+ (128)(

η|β|2(1− T ) + (1− η)|α|2
)
|0〉A〈0|.

Norm of the density matrix ρ̂ψ is given as

N = |α|2 (ηT + 1− η) + |β|2η(1− T ). (129)

Mean value of quadrature x̂ reads

〈x〉 = TrA

[
ρ̂ψ(aA + a†A)

]
= 2ηRe(α∗β)

√
T (1− T )/N. (130)

Second moment of quadrature x̂ is given as

〈x2〉 = TrA

[
ρ̂ψ(aA + a†A)2

]
= 1 +

2ηT |α|2

N
. (131)

Quadrature x̂ variance reads

Vx = 1 +
2ηT |α|2

N
− 4η2 (Re(α∗β))2 T (1− T )

N2
. (132)

Variance is decreasing with increasing term (Re(α∗β))2. It implies that real α and β
are optimal. If normalization of |ψ〉B expressed as |α|2 + |β|2 = 1 is used, it can be
shown that optimal coefficient α reads

αopt =

√
η(T − 1)√

(1− T )(2η(T − 1) + 3)
(133)
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and variance for α = αopt is expressed as

Vx =
4− η(4− 3T )

4 + 4η(T − 1)
. (134)

Variance reads Vx = 1− η
4

in limit of weak measurement T → 1.
This is a prove that minimal variance of squeezed quadrature reachable by weak

measurement is VS = 1− η
4
. Remarkably, this threshold can be achieved by single-copy

recycling with homodyne detector as well as with threshold detector. VS = 1 − η
4

is
maximal squeezing extractable from one attenuated single-photon state using linear
optics with any detection technique.

7.5 Optimal two-copy recycling with projective measurement

Now we will consider projective measurement on ancillary mode after interference of
two single-photon state copies on symmetric beam splitter. Ancillary mode will be
projected to superposition α|0〉+ β|1〉+ γ|2〉, where |α|2 + |β|2 + |γ|2 = 1.

Input state density matrix reads

ρ̂in = η2|11〉AB〈11|+ η(1− η)|10〉AB〈10|+ η(1− η)|01〉AB〈01|+ (1− η)2|00〉AB〈00|.
(135)

Interference on symmetric beam splitter transforms density matrix to

ρ̂BS =
η2

2
(|20〉AB〈20|+ |02〉AB〈02| − |20〉AB〈02| − |02〉AB〈20|) +

η(1− η) (|10〉AB〈10|+ |01〉AB〈01|) + (1− η)2|00〉AB〈00|. (136)

Projective measurement on state |ψ〉B = α|0〉B + β|1〉B + γ|2〉B with normalization
condition |α|2 + |β|2 + |γ|2 = 1 is used on tapped mode B. Density matrix is then
expressed as

ρ̂ψ ∝ TrB [ρ̂BS|ψ〉B〈ψ|] = 〈ψ|Bρ̂BS|ψ〉B =

η2

2

(
|α|2|2〉A〈2| − αγ∗|0〉A〈2| − α∗γ|2〉A〈0|

)
+ |α|2η(1− η)|1〉A〈1|+ (137)(

|α|2(1− η)2 + |β|2η(1− η) + |γ|2η
2

2

)
|0〉A〈0|.

Norm of the density matrix ρ̂ψ is given as

N =

(
η2

2
− η + 1

)
|α|2 + η(1− η)|β|2 +

η2

2
|γ|2. (138)

Mean value of quadrature x̂ is equal to zero and variance is given then as

Vx = 〈x2〉 = TrA

[
ρ̂ψ(aA + a†A)2

]
= 1 +

2|α|2 −
√

2η2Re(αγ∗)

N
. (139)
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Variance is decreasing with increasing term (Re(α∗γ))2. It implies that real α and
γ are optimal. It can be shown that optimal value of coefficient β is equal to zero.
Normalization of |ψ〉B is then expressed as |α|2 + |γ|2 = 1. If we use normalization
condition to exclude γ, variance reads

Vx =
2α2(η + 1) + η2 − 2

√
2− 2α2αη2

2α2(1− η) + η2
. (140)

Optimal coefficient α is given as

αopt =
η

√
2
√

(η − 1)η +
√

2
√

(η − 2)η + 4 + 3
(141)

and minimal variance is expressed as

Vx =
η2 −

√
2
√

(η − 2)η + 2
√

2
√

(η − 2)η + 4 + 6η +
√

2
√

(η − 2)η + 4 + 4

(η − 2)η +
√

2
√

(η − 2)η + 4 + 4
. (142)

For η = 1, there is freedom in choice of optimal parameters. Minimal variance Vx = 0.55
is reached for arbitrary α < 0.303 if β = 0 if γ =

(√
2 +
√

3
)
α. Homodyne and

heterodyne detections are then sufficient to reach maximal squeezing. However, for
0 < η < 1, the freedom in choice of parameter α vanishes and optimal parameter αopt is
given by Eq. (141). Homodyne and heterodyne detections then cannot reach maximal
squeezing given by formula Eq. (140) (see Fig. 37). Optimal coefficients are depicted
in Fig. 37 where can be seen that optimal values of coefficient γ are very close to unity.
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Fig. 37: Two-copy recycling with projective measurement on superposition α|0〉+γ|2〉:
(left) minimal variance of squeezed quadrature (full-thick) is compared to minimal
squeezed quadrature variance extracted by two-copy recycling with homodyne (dashed-
thick) and heterodyne (full-thin) detectors and to vacuum noise (dashed-thin). (Right)
optimal values of coefficients α (full-thick) and γ (dashed-thick) are compared to unity
(dashed-thin).

In this section was shown that two-copy recycling with homodyne detector even
with heterodyne detector cannot extract maximal squeezing extractable from two single-
photon state copies for every 0 < η < 1. Heterodyne detection projects to superposition
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α|0〉+ β|1〉+ γ|2〉 but it cannot do projection with all required coefficients. For η = 1,
homodyne and heterodyne detectors are enough to extract maximal squeezing thanks
to the freedom of choice of optimal parameters of projective measurement.
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8 Conclusion

Remarkably, we demonstrated that squeezing can be recycled from arbitrary atten-
uated single-photon state with linear optics components and Gaussian homodyne or
heterodyne detection only. Moreover, the squeezing recycling has purification effect on
quantum states as well. We pay by success probability for higher squeezing but success
probability is just less important technical parameter since it can be increased by rate of
single photon production. Recycled squeezing can be increased with more single-photon
state copies on input. The improvement is considerable for single-photon state with
high purity but also for single-photon state with positive Wigner function, the progress
is observable. Multi-copy recycling protocol is more complex, more difficult to analyze
and very difficult for experimental realization without integrated optical technology but
still interesting enough to study. We studied the tree-structure and the linear-structure
multi-copy recycling protocols. Extractable squeezing from both of them is the same
for given number of input state copies. However, the tree-structure protocol uses less
homodyne detectors thus there are less parameters to optimize. The tree-structure pro-
tocol is then easier to analyze than the linear-structure protocol. On the other hand it
requires more complicated interference of input state copies.

Moreover, we developed partially-universal method for tree-structure multi-copy re-
cycling. Partially-universal strategy uses single non-universal layer in tree-structure
protocol and all other layers are universal. The partially-universal method extracts the
same squeezing as fully non-universal method for almost every attenuated single-photon
states. Only for single-photon states with high purity, partially-universal method is
worse than fully non-universal method. To improve the partially-universal method,
we can consider more than one non-universal layers in tree-structure protocol. If we
consider partially-universal method with finite number of non-universal layers ordered
before all other universal layers, the limit squeezing for infinite number of input state
copies is determined by relative concavity and relative steepness of input state prob-
ability distribution in points controlled by measured values in non-universal layers.
It extends the universal approach where extractable squeezing is determined just by
relative concavity of distribution of input resource state [19]. Moreover, ordering of
universal and non-universal layers are irrelevant because the extractable squeezing is
still the same. It means that limit determined for specific ordering is valid for any other
ordering, since infinite number of universal layers still follow after last non-universal
layer.

Exchangeability of universal and non-universal layers has interesting consequence.
If we consider input state with single-peak probability distributions of quadratures and
we apply finite number of universal layers, the state will by closer to Gaussian state
with every other applied universal layer. However, if we add last non-universal layer,
squeezing still can be extracted despite squeezing cannot be recycled from Gaussian
state at all. Extractable squeezing is the same as if we firstly apply the non-universal
layer and then we add all universal layers. Remarkably, essential ingredient for squeezing
hidden in the input state survives despite the Gaussification of the state caused by
universal recycling. Only thing, which we pay for ordering the non-universal layers on
the end of the recycling, is less probability of success.
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We showed that optimal projective measurement for single-copy recycling from at-
tenuated single-photon state can be reached by homodyne detector, heterodyne detec-
tor and threshold detector as well. However, for two-copy recycling, optimal projective
measurement cannot be reached with neither of them. Two-copy recycling from atten-
uated single-copy state with heterodyne detection can extract more squeezing than the
same protocols with the other two detectors and on the other, hand threshold detector
is worse than the rest.

Our main target is to produce quantum squeezing in the cases when the standard
sources of squeezing are not available but still we can produce many interfering single
photons. It seams to be relevant for ultraviolet region of electromagnetic spectrum
where parametric nonlinear processes in optical crystals are challenging but still single
photon sources are existing [32, 33]. Our analysis is a first step to produce continuous-
variable quantum states in this ultraviolet region.
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9 Outlook

Natural extension of studied resources will be higher Fock states than two-photon state.
They exhibit nontrivial multi-peak probability distributions of quadratures with high
curvature. Two-photon state was proven to be better resource than single-photon one.
It suggests that higher squeezing could be extracted from multi-photon states. On the
other hand, multi-photon states are very complex and difficult to generate.

Other interesting issue is whether a better resource is large number of single-photon
state copies or smaller number of multi-photon state copies or even only one multi-
photon state with high energy. In other words, if better strategy is to fuse single-photon
states to multi-photon state before the recycling or to use them directly for recycling.
For two copies of pure single-photon state, both strategies are equal but for attenuated
single-photon state, they differ and optimal strategy depends on attenuation factor η.
Situation is more complicated for higher number of input states.

Everything about single-photon state resource is not still answered. Optimal pro-
jective measurement for single-copy recycling from attenuated single-photon state can
be reached by homodyne or heterodyne detection but for two-copy recycling, optimal
projective measurement cannot be reached with neither of them. Therefore, there is a
need for better detector. Optimal projective measurement should be studied for multi-
copy recycling but it is very complex problem because Hilbert space expands with
increasing number of input states. For pure single-photon state, homodyne detection is
sufficient to reach optimal extractable squeezing by two-copy recycling but on the other
hand, question of limit squeezing for large number of pure single-photon state copies
is not answered. Non-universal multi-copy recycling and multi-layer partially-universal
recycling suggest that arbitrarily high squeezing could be achieved for large number of
input state copies but we cannot compute enough data to make a good estimation of
the limit. To solve this problem, Fock state representation could be better than Wigner
function formalism, because only pure single-photon states are considered.

All tools developed for quantum optics could be transformed to different platforms
like solid-state physics or atomic systems. Moreover, all squeezing recycling strategies
could be transformed to extract different quantum processing resource. For example,
slightly squeezed states with high purity are another important resource for quantum
information processing. Studied squeezing recycling tools have purification effect as
well. It means that recycling protocols could be optimized to produce states with high
purity in condition that recycled state exhibits at least slight squeezing.

Finally, we plan to investigate novel class of recycling strategies based on active
coherent manipulation of sources generating single-photon states. We believe it can be
a resource to produce more squeezing and break limitations given by Gaussian methods.

62



References

[1] D. F. Walls, Squeezed states of light, Nature 306, 141 (1983).

[2] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz and J. F. Valley, Observation
of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity, Phys.
Rev. Lett. 55, 2409 (1985).

[3] L.-A. Wu, M. Xiao and H. J. Kimble, Squeezed states of light from an optical
parametric oscillator, J. Opt. Soc. Am. B 4, No. 10 (1987).

[4] T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M.
Mehmet, H. Müller-Ebhardt and R. Schnabel, Quantum Enhancement of the
Zero-Area Sagnac Interferometer Topology for Gravitational Wave Detection,
Phys. Rev. Lett. 104, 251102 (2010).

[5] S. Takeda, T. Mizuta, M. Fuwa, P. van Loock and A. Furusawa, Deterministic
quantum teleportation of photonic quantum bits by a hybrid technique, Nature
500, 315 (2013).

[6] S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki,
J. Yoshikawa, H. Yonezawa, N. C. Menicucci and A. Furusawa, Ultra-large-scale
continuous-variable cluster states multiplexed in the time domain, Nat. Phot. 7,
982 (2013).

[7] L. S. Madsen, V. C. Usenko, M. Lassen, R. Filip and U. L. Andersen, Continuous
variable quantum key distribution with modulated entangled states, Nat. Commun.
3, 1083 (2012).

[8] A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement, (WILEY-
VCH, Weinheim, Germany, 2011).
ISBN: 978-3527409303

[9] B. Kraus, K. Hammerer, G. Giedke and J. I. Cirac, Entanglement generation and
Hamiltonian simulation in continuous-variable systems, Phys. Rev. A 67, 042314
(2003).

[10] J. Heersink, Ch. Marquardt, R. Dong, R. Filip, S. Lorenz, G. Leuchs and U. L.
Andersen, Distillation of Squeezing from Non-Gaussian Quantum States, Phys.

63



Rev. Lett. 96, 253601 (2006).
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the distillation and purification of phase-diffused squeezed states, New J. Phys. 9,
227 (2007).
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Demonstration of Continuous Variable Purification of Squeezed States, Phys. Rev.
Lett. 97, 150505 (2006).
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