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Basic notation

U - v
A:B
uRu
Cc™"(Q),neN

C=(Q)
CHQ),neN
6 (€)

D(Q)
I-llx
X*
|€2]
XQ
aiu
3tu
Vu
Du
N

[SHEENY SHEEN

set of all integers

set of all real numbers

closed interval in R

open interval in R

real N-dimensional Euclidian space

subset of RY

boundary of (2

scalar product of vectors

scalar product of matrices

tensor product

set of all functions with countinuous derivatives
up to the order n

set of all functions with countinuous derivatives
of any order

set of all functions with countinuous derivatives
up to the order n with compact support in €2
set of all functions with countinuous derivatives
of any order with compact support in €2

C°(Q2) with the topology of locally uniform convergence
norm in X

dual space of X

Lebesgue measure of €2

characteristic function of €2

derivative of u according to i-th space variable
derivative of u according to time variable
gradient of u

symetric part of Vu

imbedding

compact imbedding



Introduction

The aim of the diploma Thesis is to study the behaviour of the variational
solutions to Navier-Stokes equations describing viscous compressible isothermal
fluids with nonlinear stress tensors (for the formulation of the problem see Section
2) in a sequence of domains {€2,}5°,, which converges to a domain . This
convergence of domains is defined by the Sobolev-Orlicz capacity. We prove that
the solutions converge to a solution of the respective Navier-Stokes equations in
Q). This problem was first studied in [1] for barotropic fluids.

The result obtained in the Thesis can be applied to generalization of the
existence result proved in [4], [5] and [9], where C?#-regularity of the boundary
of the domain was required. After the convergence of the sequence 2,, the
existence result covers all 0 having C%!-regularity of its boundary. Moreover,
the results of the Thesis provide mathematical apparatus for shape optimization.

The thesis is organized as follows: In Section 1, a corollary to of Alaouglu
theorem is presented. Then Young functions and their properties are introduced.
Next some theory of Orlicz and Sobolev-Orlicz spaces is explained, especially
the spaces generated by fast growing functions. Sobolev-Orlicz capacity is also
defined and the considered convergence of the domains introduced. In Section 2
the problem formulation and the main result of the Thesis is presented. Some
auxiliary lemmas and their proofs are post poned to Section 3. These assertions
will be used in the last section. In Section 4, apriori estimates are derived, which
enable us to pass to weakly convergent subsequences. The last section uses the

results of Sections 1, 3 and 4 to prove the main result.



1 Preliminaries

1.1 Some notes from functional analysis

Definition 1.1. Let X be a normed linear space and X* its dual space. A
sequence {u,}5°,; C X is said to converge weakly to u € X (denoted by u,, — u),

if p(u,) — p(u) for any p € X*.

Definition 1.2. Let X be a normed linear space. A sequence {p,}°°, C X* is

said to converge weakly-+ to o (denoted by @, — ¢), if ¢, (u) — @(u) for any
ue X.

Theorem 1.3. Let X be a separable normed linear space. Then every bounded
sequence {@,}5°, in X* contains a weak-x convergent subsequence.
Proof: For a sketch of the proof see [3, page 270].

1.2 Young functions and function spaces

Definition 1.4. We say that @ is a Young function if

B(z) = / oy dy, = >0,

where ¢ is a real-valued function defined in [0, c0) such that

(ii) ¢(y) > 0 for y > 0,
(iii) ¢ is right continuous at any point y > 0,
(iv) ¢ is nondecreasing in (0, oo,

(v) lim ¢(y) = .

Yy—oo

Lemma 1.5. Fvery Young function @ s continuous, nonnegative, strictly in-

creasing and convex in [0, 00). Moreover,

&(0) =0, lim &(z) = oo,

Z—00
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Proof: See [2, page 129].

Definition 1.6. Let @ be a Young function generated by the function ¢, i.e.

If we denote

then the function
v() = [ i) dy
0
is called the complementary function to ®.

Remark 1.7. If @ is a Young function then its complementary function ¥ is a

Young function as well.

Remark 1.8. If ¥ is complementary to @ then @ is complementary to ¥. We

can also call @, ¥ a pair of complementary Young functions.

Theorem 1.9 (Young’s inequality). Let @, ¥ be a pair of complementary Young

functions. Then for all u,v € [0, 00) we have
uww < O(u) +¥(v).
The equality occurs if and only if
v=op(u) or u=1v).

Proof: For a sketch of the proof see [2, page 65].
7



Definition 1.10. A Young function @ is said to satisfy the As-condition if there
exist £k > 0 and 2y > 0 such that

D(22) < kP(2), Vz> z.
If 2o = 0, we call the Ay-condition global.

Lemma 1.11. A Young function @ satisfies the Ao-condition if and only if there
exist k > 0 and zy > 0 such that

where ¥ is the complementary function to ®.

Proof: See [2, page 139].

Definition 1.12. Let @1, @, be two Young functions. If there exist positive

constants k and zp such that
D1(2) < Py(kz)  for z > z,
we write down this fact as
P < D

If
@1 < @2 and @2 < @1

we say that &, and @, are equivalent.

Definition 1.13. Let &, &5 be two Young functions. If

b
lim 1(Z)

=0
z—00 Py(A2)

for all A > 0, we denote it by
D << Ds.

Theorem 1.14 (Jensen’s inequality). Let @ be convex in R.
8



o Letuy,...,u, € R and aq,...,a, be positive numbers. Then

QS(Q1U1+"'+Q"U”) - a1 D(ur) + - - - + 0 ®(uy)
atota, )T atotan

(1.1)

o Let a(x) be defined and positive almost everywhere in Q C RN. Then

o (fQ u(z)a(x) da:) - Jo @(u(z))a(z) dz 1.2)
Joa(x) de Jo o) dx
for every nonnegative function u provided all the integrals are finite.

Proof: See [2, page 133].

Definition 1.15. Let Q € RY be an open set and let @ be a nonnegative function
defined in [0, 00). The set of all Lebesgue-measurable functions u defined almost

everywhere in €2 such that
pusd) i= [ B(jula)))da < oc
Q

is called the Orlicz class and denoted by Lg(€).

Remark 1.16. Special cases of the Orlicz classes are Lebesgue spaces LP((),

p > 1. We just put &(t) = ct?, where ¢ > 0 is an arbitrary constant.
Theorem 1.17. Let @ and ¥ be a pair of complementary Young functions, u €

Lo(Q) and v € Ly(Q). Then uv € L*(Q) and

/Q|U(33)U(w)\dwS/Q@(|u(ac)|)dw+/!P(\v(a:)|)da:

Q

Proof: The assertion follows directly from Theorem 1.9.
Lemma 1.18. Let @ be a Young function. Then qu.(Q) is a conver set and
Lo(Q) € LY(Q)

for || < oo.
Proof: See [2, page 130]



Definition 1.19. Let @, ¥ be a pair of complementary Young functions. The
set of all Lebesgue-measurable functions u defined almost everywhere in €2 such

that

Jullg := sup {/ lu(z)v(x)| dz; v € Ly (Q), p(v;¥) < 1} < o0
is called the Orlicz space and denoted by Lg(£2).

Theorem 1.20. Let @1, $5 be two Young functions. Then Lg,(2) — Lg, () if
and only if @ < P1.
Proof: See [2, page 185].

Theorem 1.21 (Holder’s inequality). Let @, ¥ be a pair of complementary Young
functions, u € Lg()) and v € Ly(Q2). Then uv € LY(Q) and

| @)@ de < sl

Proof: See [2, str. 152].

Theorem 1.22. Let ¢ satisfy the Ag-condition. Then the Orlicz space Lg(S2) is
separable.

Proof: See [2, page 161].

Definition 1.23. The space Eg(f) is defined to be the closure of B(), i.e. of
the set of all bounded measurable functions defined in €2, with respect to the

norm || - |g.

Remark 1.24. It generally holds

Es(Q) C Lg(Q) C La (),

where the equality occurs if and only if @ satisfies the Ag-condition.

Theorem 1.25. Let @1, @5 be two Young functions. If @3 << &y, then Lg, (Q) —
E,().
Proof: See [2, page 189].
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Theorem 1.26. Ey(2) is a separable space.
Proof: See [2, page 166].

Theorem 1.27. Let F' be a continuous linear functional in Eg(SY). Then there

exists a uniquely determined function v € Ly (Q) such that

Flu) = /Q w(@)o(@) de, Vu € Eo(Q).

Proof: See [2, page 169].

Remark 1.28. The assertion of the foregoing theorem can be expressed as

Ly () = [Eo(Q)].

Definition 1.29. We say that a sequence {u,}>° | C Lg(S2) converges Ey-weakly

to u € Lg(S2), denoted by w,, Lo, for n — oo if

/unvdwﬁ/uvdw
Q Q

for any function v € Ey ().

Remark 1.30. In view of Theorem 1.27 it is obvious that the Eg-weak conver-
gence (Definition 1.29) coincides with the weak-* convergence (Definition 1.2).
Furthermore, it follows from Theorem 1.3 and Theorem 1.26 that every Orlicz

space Lg(2) is Ey-weakly compact.

Definition 1.31. Let @ be a Young function, let X be a Banach space and @)
be a nonempty bounded open subset of RY. Denote by Lg(Q; X) the set of all

measurable mappings u: () — X such that

[ullLac@ix) = sup {/Q lu(®)llxlo(®)] dt;v € La(Q), plv; W) < 1} < 0o,

11



Definition 1.32. We say that a sequence {u,}>°; C Lg,(0,T"; Lg,(2)) converges
weak-* to u € Lg, (0,T; Lg,(2)) if

/OT gp(t)/ﬂun(axt)ww) dwdt_}/OTgo(t)/Qu(w’tW(w) de dt

for every ¢ € Ey,(2) and ¢ € Ey, (0,T).

Definition 1.33. We define Sobolev-Orlicz space W¥Lg(€2) as the space of all

lulee == | D IDull} < oo,
o,|al<k

the space W¥Eg(2) as the closure of C*(£2) with respect to the norm || - || and

functions v such that

the space Wl Lg(Q) as the closure of Cg°(€2) with respect to the same norm. We
denote
W Le(Q) = [WyLe()],

where ¥ is the complementary function to &.
Definition 1.34. We say that a sequence {u,}5°; C W'Lg(Q) converges Ey-
weakly to u € W'La(8), up > u in W'Le(Q), if u, - u and simultaneously
Vu, 2 Y.
Definition 1.35. Let us denote

Ko :={v e Lsg(R");v>0,0v € Lg(RY),i=1,...,N}

and define the @-capacity of a set M C RN as

capg(M) := inf {/RN O(|Vo|)da;v € Kg,v > 1in M} :

Remark 1.36. Note that
capg(K) = inf {/ &(|Vv|)dx;v € DRY),v > 1in M}
RN

for each compact K C RY. See [7, page 134].
12



Definition 1.37. Assume that @ is a Young function. Let {€2,}5%, be a sequence

of open sets in R3. We say that €, converges to an open set 2 C R? with respect

to @, denoted by Q, 2 Q, if
e for any compact set K C (2 there exists m € N such that

K cQ, Vn>m, (1.3)

e the sets 2, \ Q are bounded and

capg (2, \ ) — 0 pro n — oo. (1.4)

1.3 Fast growing Young functions
Definition 1.38. We define the Young functions
Dq(z) == zIn(1l + 2),

D.(z) =14+ 2)In"(1+2) for~y>1

and denote ¥, ¥, their complementary functions. Next we define the Young

function

M(z):=¢—2—-1

and M stands for its complementary function. Let us denote @1 (z) the Young

@

functions with the asymptotic growth 2lne (z) for z > zp > 0, a € (1,00), and

W1 (z) their complementary functions.

Definition 1.39. Let us define the spaces
X :={v:Q =R v|po =0,Dv € Ly (Q)},

Y i={v:Qx(0,T) = RY;v(t)|sq = 0 for a.a. t € (0,7),Dv € Ly (2 x (0,7))}

and their norms

[vllx == [[Dollarg,  lvlly == [[Dollaraxomn)-

13



Lemma 1.40. Let @, be the Young functions established in Definition 1.38 for

v > 0. Then their complementary functions satisfy the estimates

o lw
2
2

cle( ) <WU.(z) < 6%

for z > zp(y) > 0, c(v) > 0 and ¢;(y) > 0.
Proof: See [9, page 13].

Remark 1.41. It follows from the foregoing lemma, that ¥, and M are equiva-

lent. The same holds for ®; and M.

Lemma 1.42. Young functions ©.,, v > 1, satisfy the global Ay-condition.
Proof: See [9, page 14].

Lemma 1.43. Relationship between Young functions @, and ®, is ., << D,
for 0 < vy < 7y,. For their complementary functions it then holds ., << V., .
Proof: See [9, page 14].

Theorem 1.44 (Korn’s inequality). Let w € WyP(Q) for all p > 1. Then

Cp2

p—1

[l p < [Dufp.

Proof: See [4].

Lemma 1.45. Let u € Ly, (), v € Ly, (Q) and
[ull, < cplloll,, VP =2,
where the constant ¢ does not depend on p. Then

[ulle, < cflvllar

Proof: See [9, page 17].

14



Theorem 1.46. Letu € Ly (2% (0,T)). Thenu € Ly (0,T; Ly (). Let further
v € Lp, (2 % (0,T)). Then u € Ly, (0,T; Ly, () for o, 8 € (1,00) such that
7

é
1,1 _
lpl=1.
Proof: See [9, page 22].

Theorem 1.47. Let u € Ly, (2 x (0,T)), v > 1. Then u € Ly, (0,T; Ly, ().
Proof: We proceed similarly as in [9, page 22]. For functions ¢ € Lg (),

Jo @+ (Jpl)de < 1, and ¢ € Ly (0,7) fo 4(J]) dt < 1 we have

/ 1/)sup/u<pda:dt' // w) dee dt+

T
+sup/ sup/ lo| In?(1 4 |py]) dedt + ¢ <
v Jo o ¢ Ja

sup

T
< etw) (suwp [ sup [ feuim (04 fe) 1+ o) de i+ 1) <
T Y
< etw) (sup [ sup [ foul (11 1ol + 01+ ) dede 1) <

T
Y
< c(u) (sip/o sgp/g\gpwln (1+ |¢|) de dt+
T
+s1;p/0 sip/ﬂhowln“’(l#—W)|)dazdt+1) =
T
— c(u) (sup [ttt su [ oo+ ol da
P Jo ¢ JQ
T
+sup/ || In"(1 + |[¢|) dt sup \gp\dw+1) < 00,
P JO v JQ

where we have used the Young inequality and the Jensen inequality (1.1). O

2 Formulation of the problem and main results

We consider a system of equations describing flow of the compresible isother-

mal fluids with nonlinear stress tensor. This system is composed of the continuity

15



equation

Op+div(pu) =0 in (2.1)
and the momentum equation
O(pu) +div(pu @ u) + Vp —divS(Du) = pf in Q, (2.2)

where € is a bounded domain in RY. The system is completed by the boundary
condition

u(x,t) =0, xxe€Qte(0,7),T>0, (2.3)

and the initial conditions
p(x,0) =po(x) >0, xec, (2.4)

(pu)(x,0) =q,, x €. (2.5)

In addition, we assume that the stress tensor S satisfies these conditions:

1. S is coercive, i.e.

/S(Dv) :Dvda Z/M(\Dv|)da: (2.6)
Q Q

for any function v € X,

2. S is monotone, i.e.
/ (S(Dv) — S(Dw)) : (D — Dw)pda > 0 (2.7)
Q

for any v,w € X and ¢ € C3°(Q), ¢ >0,

3. S is bounded in the following sense:
/H(S(Dv)) dz < ¢ (1 + / M(|Dv)) da:) (2.8)
Q Q

for any functions v € X and let S(v — cw) A S(v) for e — 0 and any

function v € Y such that Dv € Ly (Q2x (0, 7)) and any w € C5°(Q2x (0, T)),
16



4. S satisfies the estimate

// 1S(Dwy) — S(Dwy)| dwdt < (T, m)/ 1Dws (1) — Dws(t)] dt
0JQ 0

for v; € M, i = 1,2, where
M, = {v € C([0,T]; Wy*(€2)) N L=(0, T; Wh(Q));
lv()]|oo + [|[VV(t)]|oo < & for a.a. t €[0,T]},

5. if {Du,}o2, € Ly (Q x (0,7)) is a sequence such that

Du, X Du in Lig(Q x (0,7))

and

T
//S(Dun):Dunda:dtgc for all n € N,
0Jo

then

t t
liminf// S(Du,) : Du, dxdt > // S(Du) : Dudxdt (2.9)
0/0 0/o

n—oo

for all ¢ € [0,7] and any €.

Note that such a tensor really exist. As an example we can take

M (|Du|)Du
S(D’u,) _ W for Du 7£ O,
0 for Du = 0.

For the proof that it satisfies the above mentioned conditions see [9, page 43].

Definition 2.1. Couple (p,u) is called the variational solution of system (2.1)-

(2.5) if

e the density p is a nonnegative function,

17



e continuity equation (2.1) is satisfied in the in the sense of distribution in

R? and in the sense of renormalized solution, i.e.
Oib(p) + div(b(p)u) + (¥ (p)p — b(p))diva =0 in D'(R* x (0,T)) (2.10)

for any b € C'([0,00)) such that b and ' are bounded provided p and u

were extended to be zero outside €2,

e wu satisfies (2.3) in the sense of traces and equation (2.2) holds in space

D'(©2x (0,7)),

e the energy inequality

E(T)+/OT/QS(u):DudwdtﬁE(O)Jr/OT/pr-udwdt (2.11)

holds for a.a. t € [0,T], where

1 2
E(0) = _/ (@ + o lnpo) de,
2 Jq £o

e the initial conditions are satisfied in the sense

i [ ptynde = [ punde, v € D)
Q Q

t—0t

lim p(t)U(t)-ndwz/qo-ndw, vn € D(Q),
Q

t—0t Q

Theorem 2.2. Assume that 9Q € C*™* and tensor S satisfies conditions 1.-5.
Let f € Z% (2% (0,T)), B> 2. For given initial data py € Lg,(S2) and q, such
2

that ‘%2 =0 1if po =0 and |";L0|2 e LY (Q) for po > 0 there exist functions

p € L®(0,T; Loy(Q), ueY

18



such that couple (p,w) is the variational solution of (2.1)-(2.5). In addition

d 1

— /—p\u\Z—i—plnpdw +/5(Du):Duda::/pf-uda:
dt \Jo 2 Q Q

in D'(2 x (0,7)).

Proof: See [9, page 73].

The main result states:

Theorem 2.3. Let {,}5°, be a sequence of open sets in R® such that Q, 2,
(see Definition 1.37) where Q2 is a nonempty open set. Assume that tensor S

satisfies conditions 1.-5. Let (p,, u,) be a variational solution of the problem
(2.1)-(2.5) in Q, x (0, T) with the driving force f, = fxa., f € Ewg (Qx(0,7)),
B > 2, and nitial data pf = poXa., Po € L%(Q), and qi = qyXq, such that
lwl . g if po =0 and ‘%2 € LY(Q) for po > 0. Then (passing to subsequences

£0

if necessary) we have
pn— p i C((0,T); Ly (R?)),

Uy =, in Ly (0,T; Wy Ly, (R?)),
Du, = Du in Ly(0,T; Ly (R?))
and
Py — PU 1IN C(<Oa T>? ngak(RS))>

where (p, w) is a variational solution of the problem (2.1)-(2.5) in Q x (0,7T)
driven by the force f with initial data py and q,.

We assume that the stress tensor S satisfies all the conditions 1.-5. but in
fact we do not use the fourth condition in the whole text. It is introduced only

because of Theorem 2.2.

Corollary 2.4. The conclusion of Theorem 2.2 then keeps valid even if 0€) €
CcoL

19



3 Auxiliary assertions

Lemma 3.1. If Du € Ly (2 x (0,T)), then u € LU(0,T; L®(Q)) for q € [1,00).
Proof: First we show that Du € L%(0,7; LP(R2)) for arbitrary p € [1,00).
Indeed,

/Q|Du|Pd:cgc(/QM%(\Du\)dxH) gc((/ﬂM%(mudeyH),

E
because |z|? < e« + ¢ and |a| < |a’ 4 1, and thus we can write

/OT (/QIDulpda:)% dt < c(/OT (/QM%(|Du|)da;)q dt+1) <
<c (\Q\“ /OT/Q M(|Dul) de dt + 1) :

where we have used the Jensen inequality (1.2). From the fact that Du €
L9(0,T; LP(Q)) it follows from Theorem 1.44 that w € L9(0, T; Wy *(2)) for arbi-
trary p € [1,00). Since WP(Q) < L>(Q) forp > N, we get w € LI(0,T; L=()).

O

Lemma 3.2. Let Du € Ly (Q x (0,T)) and p € L=(0,T; Lo, (2)), B> 2, be a

solution of (2.1) in the sense of distributions. Then

/pda::/poda: a.e. €(0,7).
Q 0

Proof: Let us recall the fact (see [9, page 45, Lemma 4.1]) that if we extend the
functions p and u to be zero outside €2, then the equation (2.1) is satisfied in the

space D'(R3 x (0,7)). Similarly as in [1, page 5] we take a sequence

p; € D(R?), ¢; >0, sup |Vep,(x)| <1/j, ¢;11forj— o0

xcR3

and take the test functions of the form ¢;(x)y(t) with ¢ € D(0,T) to deduce

/p(T)gpjda::/ p(O)gpjdw—i—// pu - Vy;dxdt
R3 R3 0 JR3
20



for a.a. 7€ (0,T). Since p € L>(0,T; Ly, (R?)) and w € L*(0,T; L>*(R?)), then
pu € L*(0,T; L'(R?)). Indeed,

/OT (/R ”””)2 di < /OT(HP(t)!M!u(t)HOO)Qdt <

T
< ||P||%oo(o,T;L1(R3))/ [w(t)]2, dt = ||p||%°°(O,T;L1(]R3))HUH%Q(O,T;LOO(R3))'
0

Recall that p(t) € L'(R?) because it is extended to be zero outside €2, which is a

bounded domain. Thus for j — oo we infer

/,0(7’) dx :/ p(7)dex = lim (/ p(0)p; da:—l—// pu - Vo, dazdt) =
Q R3 j—oo \ Jgs 0 Jrs

= lim p(0)p; de = / p(0)dx = / po da.
J700 JR3 R3 Q
Let us denote B C RY an open ball such that Q,, C B for every n € N.
Lemma 3.3. Let €, 22, 0 and
wy Bow in Wy Ly, (B),

where w, € Wy Ly, (). Then w € Wi Ly, (£2).
Proof: According to (1.4) there exist functions ¢, € D(B) such that

0<p, <1, =1inV,(2,\Q), @, — 0in WLy, (B),
where V,,(£2, \ ) is an open neighbourhood of Q,, \ Q. Put
vy = (1 — @n)Ti(wy),

where T} are the cut-off functions,



with 7" € C*°(R) such that T'(—z) = T(z) for every z € R, T being concave

in (0,00) and

zfor0<z<1,
T(Z)_{Qforzzi%.

Functions Tj(w,,) are obviously bounded in W, Ly, (B) thus (passing to subse-

quence if necessary)

Ty(w,) 22 Ti(w)  in W)Ly, (B).

Furthermore, it is known from [2, page 358] that Wj Ly,(B) << LP(B) for
arbitrary p € N. Hence

Ti(wy) — Tp(w) in LP(B).

Similarly
w, Bw in Wy Ly, (B)

and

w, —w v LP(B)

and thus it follows from the uniqueness of the limit that Ty(w) = Ti(w) and

we do not have to pass to the subsequence. Now we show that v, 22 k(w) in

W Ly, (B). For ¢ € Ep,(B) one has

<

/B (1= )T () — Ti(w))eb dae

<

+

Y

/ onTi(wy) da
B

/B (Ti(wn) — Ti(w)) dae

where

< 2k||enllw, ||]le, — 0 for n — oo

/ onTi(wy,) d
B

and

— 0 forn— oo

/B(Tk(wn) — Ty(w)) de
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by virtue of the Eg,-weak convergence of T (w,,) and

<

/B V(1 = 0u)Ti(w) — T(w))p dz

< /VgpnTk(wn)wdw + /((1—90n)VTk(wn)—VTk(w))wda: <
B B
< /B Vi Ti (w9 dat| + /B VT (w1 da| +
+ /(VTk(wn) — VTi(w))y de/|,
B
where
[ VeuTw)vde] < K| Telallblle, =0 forn -
B
/anTk(wn)¢dw <
B
< /@n(VTk(wn)—VTk(w))¢dw + /cpnT,;(w)ng/)da: <
B B
< /Bson(VTk(wn)—VTk(W))t/)dw + lnllco [ Vwllas [¢]le, — 0 for n — oo

as a consequence of the Eg,-weak convergence of VT (w,) and the strong con-

vergence of ¢ to zero in L>({2), and

— 0 for n — oo,

/B(VTk(wn) — VT (w))y de

which follows from the Fg,-weak convergence of VT (w,). Consequently Tj(w) €
W4 Ly, (Q) because obviously v, € Wy Ly, () for every n € N. But this also
means that w € Wy Ly, (). O

Remark 3.4. If ), %2, 0 and

Dw, X Dw in Ly (B),
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where Dw,, € L(2,), then it follows from Lemma 1.45 that (passing to subse-

quence if necessary)
w, Bw in W Ly, (B)

and according to the previous lemma w € Wy Ly, (2). Thus Dw € L ().

4 Apriori estimates

Let us denote
Ok(2) := T(Ps(2)),
where T (z) are the cut-off functions defined on page 22. Consider the equation

(2.1) and put b(p) = 6,.(p) in the renormalized continuity equation to infer

D () da: /

i Jo [ (010010 = Bh(p0)) divu(t) d =0,

Now letting k — oo we obtain

5 [ eatowyaa— [

at Jq ; (%(p(t)) - p(t)%(p(t))) divu(t) dz = 0.

In the next step we use the fact that e M (%) and e M (2cz) are for arbitrary e and
¢ complementary Young functions, M is equivalent with @; (see Lemma 1.41)

and @, satisfies the Ay-condition (see Lemma 1.42). Employing to inequality
o, (zqs;(z) - @Az)) <®,(2)+C,

see [9, page 56], we have

% o Ps(p(t)) dw = /Q <%(P(t)) - p(t)%(P(t))) divu(t)de <
< ) [ (@atot0) — 01000 ) dz -+« [ a1 (L) g <

IA

c(e) (/Q@g(p(t))dw—i- 1) +5/QM (LC““)') da

<o) ([ @atpttaz+1) +e [ 2r(uto)) ae
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where the constant ¢ is taken from the inequality
| divu| < ¢|Dul.

We add the obtained inequality to (2.11) and estimate the remaining term on

the right-hand side as follows

//pf~udwdt://\/ﬁf-\/ﬁudwdt§
0Ja 0Ja
g//p|f|2da:dt+//p|u|2dwdt§
0Ja 0Ja
§//@g(p)da:dt+//Wg(|f|2)dwdt+//p|u|2dazdt§
0Ja 0Ja 0Ja
§C+//@g(p)dwdt—i-//p\u\dedt.
0Jo 0Jo

Using (2.6) we arrive to

5 | GO+ i pn) de+ (1 —2) [ [ a(Dulazdrs

+ [ stz < [ [ ol dzdesete) [ [ aapn)dode s cip)

From the integral Gronwall inequality we have

1

2 /y“ﬂu(ﬂizdw + / 5(p(r)) dae < C(e,T).

Altogether

5 [ (R + o) ptr) o+ (1 -2) [ [ 2rDul)

+ [ @aolr) da < CE 7. 5).
Q
Consequently

/Q p(B)|u®)2de < CE,T, f), foraa. t € [0,T], (@1)
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/p(t) Inp(t)de < C(e,T, f), fora.a.tel0,T], (4.2)

/Q By(p(t)) da < C(e, T, ), for aa. t € [0, T, (4.3)

/ T/ M(Du)da dt < C(e, T, f). (4.4)
0JQ

The estimates remain valid even if we replace p, w, f and Q with p,, w,, f

and €2,,.

n

5 Limit passages
5.1 Continuity equation

Consider a sequence {(pn,u,)}>, of variational solutions of the problem
(2.1)-(2.5) on corresponding sets €2,. We extend this functions to be zero in
R3\ Q,, and take arbitrary open ball B C R?® such that Q, C B for all n > m.

We can see from (4.3) that (passing to subsequence if necessary)
pn = p in L®(0,T; Lg,(B)). (5.1)

Similarly we get from (4.4) and Theorem 1.46 that (passing to a subsequence if
necessary)

Du,, = Du in Ly(0,T; Ly(B)). (5.2)

Moreover, we know from Lemma 1.45 that
w, = u in Ly (0,T; Wy Ly, (B)), (5.3)

where u € Ly (0,T; Wy Ly, (Q)) from Lemma 3.3.

Recall that u,, are extended to be zero outside €2,,, thus

wnll 220,700 (B)) < || Unll 20700000y < €llDUn| Ly 07:00 0)) < Cle, T, f),
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which follows from (4.4) and the proof of Theorem 1.47. From continuity equation

(2.1) we obtain for ¢ € WLy, (B) and ¥ € L*(0,T) the estimate

/OTw(t)@tpn,go) dt': /OTWt)/BPnun-Vgo(a:)dwdt <

T
S/O [ ()l 1 ()| ool Vol At <
< N9 ll2llonllze07:La, ) [wnl 2075200 B [V £l 5

where we have used the conclusion of Lemma 3.1. Hence 0,p, are uniformly
bounded in L*(0,7;W~'Lg,(B)). Since p, are uniformly bouded in the space
L>(0,T; Lg,(B)) and

Wy Luy(B) = Wy"(B) == C(B) = Ey,(B), p>N,
le.
Lo, (B) —<— W™ 'Le,(B),
one has from [8, page 85] that (passing to a subsequence if necessary)
pn—p 0 C((0,T); W™ Lg,(B))
and
pn—p i C((0,T); Ly (B)), (5.4)
le.

—0 forn— o0
c((o,17)

for every ¢ € Ey,(B). Since p, are extended to be zero outside €2, the same

holds in C({0,T); Ly (R)).

[ o=y

Now we are going to show the weak-* convergence of functions p,u,, to pu.
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At first we deduce for ¢ € E% (B) the estimate
Z

/B pu(un(t) - gz

/B VoD (t) - /on(Dipda| <
< /Bpn(t)\un(t)|2da:—|—/Bpn(t)\cp\Qda:S
<ot [ Dulpu)do+ [ Bilol)d

for a.a. t € [0,T], where we have used estimate (4.1). Therefore

puttn — P in L¥(0,T; Lg, (B)).
2

It remains to show that pu = pu. Take arbitrary open ball By C By C Q (this
implies By C §Q, for every n > m). For ¢ € WLy, (B1) and ¢ € L, (0,T) it
holds

/oTw(t) /Bl (Pnun — pu) - @(x) dz dt' <

<

/OT ¥(t) /131 (pn — p)Un - () d dt' n

/OT (t) /31 p(t, — ) - p(x) da di| .

For the first integral we have

/oTWt) /B1 (Pn = p)utn - () A dt‘ <

T
S/O [ @Olpn(t) = p(Ollw 124, 0 [wn(t) - Pllwgzy, @) At < (%),

where

[n(t) - Pllwgry, ) = lun(t) - @llu, 5, + 1V (un(t) - @)l 5, <

< Jun()llos.0nllPlley, 5 + VU ) pllesm + lun(t)Vells, s <

< [[Dun(t) a0, [elles,m + [V ()]les0.ll@lloo,5r + [n(t)lloo.0.[[Veollsm <
< [[Dun(t) [|ar0, (lellws, B, + @llco,r + 1VPllws,m) <

< c|Dun(®)llar0, 1Pl Wiy, 51):
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where we have used the assumption that § > 2 and Lemma 1.45, thus
(+) < cllvo@llellon = plloconyw—1Ls, ) Pl Lo riLa@ [P Wiz, 51)-

In the case of the second integral we use weak-* convergence (5.3). It only remains
to check that p(t)p € Eg,(B1) = Lg,(B1) (9o satisfies the Ag-condition). But
this is easy because for o € Ly, (B;) it holds

/Bp(t)soodw < cllpllzoeqo.r:Ls, iyl llole,
Altogether
Pty = puin Ly (0,T; W' Le,(B1))

for arbitrary B; C B; C € and consequently from the uniquenes of the limit, the

definition of open sets and the prolongation of p,, u,, p and w function

Puthy, = pu in L(0,T; Ly, (B)).
2

Since the ball B was arbitrary, we have deduced that couple (p,u) satisfies
the equation

Op + div(pu) =0 in D'(R® x (0,7)) (5.5)

and also in the sense of renormalized solution (see [9, Lemma 4.2, page 46]).

5.2 Momentum equation

In the foregoing part we assumed that the open ball B C R? satisfies €2, C B
for n > m. But here we will consider the case B C B C §),.

Now we are going to show the uniform boundedness of p,u,, ® u,, in the space
L(0,T; Lo, (B)), q € [1,00). Let ¢ € Ly,(B) and ¢ € L7(0,T), 2 + 4 = 1.
Then according to Lemma 3.1 and (4.4) for u = u,, and Q = Q,, it follows

/0 b(t) /B pulttn () dwdt] < / () 1m0l 2t (D)2t <

< @l llonll oo 0110, ) [0l L2 (0 12100 ) PNl < (5.6)

< ¥llglonll 2 0.15L0 (8 [0 | L2000 ) 2l -
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In the next step we obtain from the momentum equation for ¢ € W Ly, (B)
2

and ¢ € E% (0,T) the estimate

/OT () (O (prun), p()) dt' <

/OT U(t) /B(pnun ® u,) : Dp(z) dz dt' N

-~

Iy

+

/OTw(t)/]Spndisz(x)dwdt'+ /OTw(t)/BS(Dun);Dcp(x)da:dt'—i—

' g

12 13

We now estimate integrals [;, i« = 1,2, 3,4, one by one:

L= [ 00 [ s ) Dt dw| <

gl|wwmwww®w@mmw@ag

< [¢llgllonvn © wnllLao.r:s, ) DPllws,

because we have already proved that p,u, ® w, are uniformly bounded in the

space L1(0,T; Lg,(B)),

Iy =

A¢@A%mwmmﬂslwmwwmﬂmwmws

< [@llillonll e .12, ) | div @l

where we have used the fact that 3 > 2, and therefore Ly, (B) C E% (B),
2

I3 =

/OT¢(t)/]35(Dun) : Dg(x) da:dt‘ <

T
< [ OISO, Dpls, di <
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< Nlla, 15w 1 07510 (5| Depllr, <
2 2 2 2
T —_
< [#llo, 1D, ( / / M(|5(Dun)|)dazdt+1) -
2 2 0JB
T
< 16 ]lo, [D@llo, - (// M(\Dun\)dwdm—l)
2 2 O B

T
< [¥lle, [D@llw, cs ( / /Q M(|Dun|)dazdt+1)
2 2 0 .

from Theorem 1.46 and the third assumption on the stress tensor S,

Iy =

T T
/ w(t)épnfn~¢(w)dwdt' S/ [ on s | Fr () llz, [Pl dt <
0 0
< clllo, lonllieorisa, N Falls, 0110, il
2 2 2

in view of Theorem 1.47 and the fact that Ly , (B) < Ly, which dives the result
2
that 0;(p,u,) are uniformly bouded in Lg, (0,T; W 'Lg, (B)). Since p,u, are
2 2

moreover uniformly bounded in L>(0, T} Lg, (B)) and

Wo Lu, (B) = Wy Ly, (B) — W " (B) = C(B) — Eu, (B),

1.e.

qu (B) —— W71L¢ﬂ(B) — VViqusl (B)),

[N

we can write (see [8, page 85])
patty, — pu in C((0,T); W' Le,(B)). (5.7)

Now we are going to show the convergence of p,u, ®u,. For ¢ € WolL% (B)

and ¢ € Lg, (0,7") we have

/OT ¥(t) /B(Pnun U, —puu): p(x)dr dt' <

<

/OT (t) /B((Pnun —pu) @u,) : p(x)de dt' n

#| [ 00 [ (u - ol doa]
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For the first integral

/o Y(t) /B((Pnun —pu) @ u,) : p(x)dedt] <

T
S/O [ @O)lon (@) wn(t) = pO)u(®)lwrLs, ) lwnOPllwir,, @) At < (),
whereas

lun () ellwir, i) = [wn(O)Plluss + [V (wnt)@)lle, 8 <
< [un(@)lloo.n il B + [Vn(t)pllws, 5 + [un(t) div @lle, p <
< [[Dun(@)[[argn [l 5 + [[Ven () ey, 1 lloo. 5 + 1en () loo0n | div @l 5 <

< c|[Dun(®) [0, @llwiL,, 5,
where we have used Lemma 1.45 and the fact g > 2, thus
(%) < clldllallonwn = pulloqomyw=11a, ) DUl Ly 1Ly @) 1Pl 5),

which converges to zero according to (5.7). For the convergence of the second

integral we use weak-* convergence (5.3). It is possible because

/OT (/Bpnun - p(x) dw>2 dt

< Hpn(t)H%oo(o,T;L%(B))Hun(t)H%%o,T;Loo(B))HSDva[p

T
< [ 100l a0, de <
0

and thus p,u,, arew bounded in L?(0, T} Lg,(B)). Altogether
Prtln @ Uy, — pu @u  in Ly (0, T; W' Le,(B)),
i.e. from uniqueness of the limit function
Pnln @ Uy, N pu®@u in L0, T; L%(B))

for ¢ € [1, 00).
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In the case of p, f, we have

/OTW /B@nfn — pf)p(x) dz

/OTt/)(t)/B(pn —p)fo(z) dz

and we can apply weak-* convergence (5.1).
Next obviously S(Dw,,) A S(Dw) in Ly;(B x (0,7)) from (4.3) and the prop-
erties of S.

From definition of the open set it follows that p, u satisfy the equation

di(pu) + div(pu @ u) + Vp — divS(Du) = pf in D'(Q2 x (0,7)). (5.8)

Similarly to [9, str. 62] we prove that couple (p,u) satisfies in the sense of

distributions the identity

d 1
— —p\u\de+/5(Du):Duda:—/pdivuda::/pu~fda:. (5.9)
dt Jqo 2 Q Q Q

Nevertheless, for p,, u, we have (see Theorem 2.2)

d ]. 2 .

T §pn\un| dx+ S(Du,) : Du, dz— pndivu, de = Py - f, dx.
Qn

(5.10)

After subtraction of the identities we obtain

/ on(t) (/ S(Du,) : Du, dx — / S(Du) : Dudw) dt =
0 n Q
! / 1 2 1 2
= (1) —pnluy|de — [ —plu|*dx | dt +
0 Q, 2 Q2
+/ on(t) (/ pndivundaz—/pdivuda:) dt +
0 Q Q
+/ en(t) (/ pnfn-undw—/pf-udw) dt,
0 Q, Q

where ¢, € C°(0,T),0 < ¢, <1, ¢, T1for h — 0a.e. in [0,T]. Let Q, Q C Q,
be a suitable set generated by a finite unification of balls B C B C 2. We treat
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the above integrals one by one

T 1 1
/ eh(t) (/ = Pn|un|? da —/ —p\u\de) dt =
0 Qn 2 Q 2
T / 1 2 1 2
= [ ¢n(t) = | |? da — “pluPde ) dt +

i 1
+/ @Z(t)/ = (palunl® = plul’) dzdt,
0 0 2

where

T 1
/ goﬁl(t)/ 5 (palunl® = plul?) dedt — 0 for n — o
0 Q

from the weak-+ convergence of p,|u,|* in L9(0,T; Ls,(Q)), see (5.6), and

T 1 1
/ @n(t) (/ —pn\unIde—/ —p|u\2dw) dt <

< () (Ixanallv, + Ixaalls, ) < ,

as a consequence of (see [7, page 136]), the boundedness p,, |u,|* in L9(0,T’; Lg,(Q))
and the suitable choice of () depending on h. We argue similarly for

/Orcph(t) (/ﬂnpnfn'undw—/ﬂpf-udaz) dt.

For the remaining term we use the same method as at the beginning of Section

3 to derive from the continuity equations the identities

/ (a(7) n(pu(t) + 8) = g (o} +6) ) da = /0 / P iy u, da dr,

0+ pn

n

and

/Q (P(T) In(p(t) +0) — poIn(po + 5)) de = — /OT/Q 6fp div u de dt,
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where § € (0,1). Now we can take a ball B, QUQ,, C B. From zero prolongation

of p and p, and the convexity of functional [, pIn(p + 0) d we have

/Q o) In(p(t) + 8) da — / (™) I(pn(t) + 8) daz =

/B <P(T) In(p(t) +6) — pu(7) In(pn(t) + 5)) de <

S/B(ln(p%—é)—kﬁ) (p— pn)dx — 0 for n — oo

as a consequence of (5.4), and

[ Attt + 5)da— [ potnon + ) da =
n Q
= / poIn(py + 9) dx — / poln(pg + 0) de < ¢(n),
Qn Q
where ¢(n) — 0, n — oco. It follows from the foregoing estimates
/ on(t) (/ ppdivau, de — / pdivudaz) dt =
0 Qn Q
_ / (ont) — 1)/ o div u, daz dt —/ (on(t) — 1) / pdivuda dt +
0 Qn 0 Q
—l—// O div'u,nda:dt—// op divuwdx dt +
0Ja, 0+ pn 0Jad+p

T P2 T p2
+// 7”divunda:dt—// divudedt <
0 Qn6+pn 0Jad+p

< llen = Ulazllonll oo 0.0:Ls , () IDUn | Las(0.7: 201 20)) +

+ llon = Ulazllpll s 0.1):Ls @) D@ Lo 1200 2)) +

+ 6HDunHLIW(O’T§LIW(Qn)) + 5HDUHLI\/[(07T§LJ\/[(Q)) + C(n) <

S K(Cl(h) + CQ(TL) + (5)

where ¢;(h) — 0 for h — 0, ¢a(n) — 0 for n — oo and J can be arbitrarily small.
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Altogether

liminf/ gph(t)/ S(Dun):Dundwdt—/ gph(t)/S(Du):Duda:dtg
0 n 0 Q

n—oo

< ¢1(h) + co(h) (5.11)

Now we take a sequence of open sets () defined similarly as ) such that

Qr CQ, 12\ Qi — 0, and functions

U € CP(Qr), 05y <1, ¢ T 1ae in Q.

From the monotonicity of the stress tensor S we infer

| o) [ (5(Du) = 5(Do)) : (D, ~ Doy dwde = 0.
le.

/T goh(t)/Q S(Dw,) : Du, dzdt > /T cph(t)/ﬂ S(Du,,) : Du, Yy dedt >
0 n 0 n
> /0 " ont) / <5(Dun) . Dw + S(Dv) : Du,, — S(Dv) : Dv) by da dt,
and thus letting n — oo and using (5.11)
/OTgoh(t)/QW : Dudxdt >
> /OT cph(t)/ﬂ <W : Dv + S(Dv) : Du — S(Dv) : Dv>¢k de dt.

In view of the Lebesgue theorem for k£ — oo

/T on(t) /Q(W — S(Dv)) : (Du — Dv)dxdt > —c(0, h).

0

Since ¢(d, h) is arbitrarily small we get using the Lebesgue theorem

/ ' / (S(Du) — S(Dv)) : (Du — Do) dwdt > 0.
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Then put v = u — A, where ¢ € C§°(2 x (0,7")) and A > 0. As a consequence

to the monotonicity and the third property of the stress tensor S we infer

div S(Du) = divS(Dw) in Le, (0,T; W 'Le, (), o> 2.
Moreover, S(Du) € Ly;(2 x (0,77)) in view of (2.6), (2.8) and (2.9).

5.3 Energy inequality

In the same way as in [9] we deduce

d 1
—(/ —p\u\Q—l—plnpdw) +/5(Du):Duda::/pf-uda:
dt \ /o 2 Q Q

The energy inequality (2.11) can be derived similarly as in [1].
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Conclusion

In this Thesis we studied the behaviour of the variational solutions to Navier-
Stokes equations describing viscous compressible isothermal fluids with nonlinear
stress tensors in a sequence of domains {€2,,}°°; which converges to a domain €.
We proved that the solutions converge to a solution of the corresponding Navier-
Stokes equations in 2. The proof is based on the application of the theory of
Orlicz spaces. We also had to prove some basic lemmas for the Orlicz spaces of
Bochner’s type. We genaralized the existence-result from [4], [5] and [9], where
C?*Th-regularity of the boundary of the domain was required. The developed

technique can be applied to the shape optimization of the respective fluids.
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