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Uvodni slovo

V dnesni dobé je statistika a ji pribuzné discipliny nedilnou soucasti nasich zi-
votl. Af uz si to uvédomujeme ¢i ne, setkavame se s jejimi dusledky a aplikacemi
prakticky kazdy den. Pfi studiu, v zaméstnani, pfi sledovani televize, pfi ¢teni
novin nebo v konverzaci s ostatnimi lidmi. Proto je urcité piinosné zajimat se
ze statistického hlediska hloubéji vztahy a zakonitostmi, které se vyskytuji kolem
nas. Pomaha nam to pochopit riizné prirodni ¢i spolecenské jevy. Aplikace statis-
tiky lze najit snad ve vsech védnich odvétvich poc¢inaje matematikou, ekonomii
pres medicinu, techniku, astronomii a psychologii konce. Vzhledem k rozmani-
tosti, ktera je typicka tomuto svétu, se statistické metody rozvinuly do obrovské
site a lze predpokladat dalsi rozvoj. Zde se budeme zabyvat smisenymi distri-
bucemi.

Smisené distribuce jsou pomérné mladou oblasti matematické statistiky. Nej-
vétsi rozvoj zazily teprve az ve druhé poloviné 20. stoleti. V soucasnosti diky
moznostem vypocetni techniky je mozno smisené distribuce pohodlné vyuzivat
pri Teseni rozmanitych problémii. V této praci se seznamime se smisenymi dis-
tribucemi jako s uzite¢nym nastrojem modelovani riznych jevii a dat. Ukazeme
si zakladni definici smisené distribuce, jeji rtuzné typy a tvary a zaméfime se
na metody odhadt parametr smiSenych distribuci. Na zavér si uvedeme priklad
pouziti smisené distribuce v medicinské praxi.

Cilem prace je seznamit Ctenare se zakladnimi vztahy v oblasti smisenych dis-
tribuci, s metodami odhadt jejich parametri a ukazat jejich praktickou aplikaci.

Prace je zaméfena predevsim na aplikaci ne zcela standardniho algoritmu
na realnd data s medicinsky smysluplnou interpretaci. Zarovén se snazi byt i
jakymsi voditkem ¢i navodem pro Ctenare, ktery pii feseni svych tkolt potfebuje

pomoc.



1 TUvod do problematiky smiSenych distribuci

1.1 Historicky nahled

Jednu z prvnich vyznamnéjsich analyz, které zahrnovaly pouziti smiSenych
distribuci, provedl na konci 19. stoleti zndmy anglicky biometrik Karl Pearson.
Ve své praci modeloval smisenou distribuci ze dvou hustot normélnich rozde-
leni se stiednimi hodnotami p; a po a rozptyly of a o2 v proporcich m a my
z dat, které mu poskytl jeho kolega W.F.R. Weldon. Pozdéji se ukazalo, Ze jeho
prace byla prvni, kterd prosazovala statistickou analyzu jako priméarni metodu
studia biologickych problémt. Data, kterd Pearson analyzoval, se skladala z vy-
sledkit méfeni poméru cela k télesné vysce cloveka. K dispozici mél 1000 métreni
z oblasti neapolského zalivu. Méfeni bylo rozdéleno do 29 intervalti a zobrazeno
v histogramu, ve kterém se projevila urcita sikmost. Z tohoto pozorovani Weldon
usuzoval, zda neni mozné, ze mérend populace se vyviji ve dva nové poddruhy.
Na zékladé tohoto zjisténi se pak obratil na Pearsona pro pomoc s analyzou dat.

Pearson modeloval data metodou momentti. Dnes se pouziva vhodnéjsi me-
toda maximalni vérohodnosti, kterou si priblizime i v této praci. V jeho modelu
se ukazalo, ze tato smisena distribuce dvou normalnich rozdéleni pfesné spliuje
Pearsontiv zamér, jenz byl modelovat zjevnou sikmost projevenou v histogramu,
kterou nelze adekvatné modelovat symetrickym normalnim rozdélenim. Odhady
parametrii svého modelu (pu1, pio, 0%, 02 a m1; T2) vypocital jako kofeny polynomu
stupné 9, coz na konci 19. stoleti nebylo jednoduchym tikolem. Neni prekvapivé,
ze dalsi védci se béhem let pokouseli zjednodusit Pearsoniiv postup, naptiklad
C.V.L. Charlier. S nastupem pocitaci se pozornost presunula na odhadovani pa-
rametri smisenych distribuci metodou maximalni vérohodnosti, kterou se zaby-
vali Jeffreys, Rao, Hasselblad, Dempster ¢i Aitkin. V poslednich letech se smise-
nymi distribucemi zabyvali naptiklad Lindsay Bohning nebo Wedel a Kamakura,
kteri se zabyvali aplikaci smisenych distribuci v marketingu. Vznikly také nové
metody odhadovani parametri. My se seznamime s tzv. EM algoritmem. Dalsi

podrobnosti lze nalézt napiiklad v [8].



1.2 Zakladni definice

Smisené distribuce poskytly matematicky zalozeny pristup ke statistickému
modelovani Siroké skaly rtznych jevi. Diky uziteCnosti, ktera je ddna znac¢nou
flexibilitou pfi modelovani, ziskaly modely smiSenych distribuci zna¢nou pozor-
nost nejen z praktického, ale i z teoretického tthlu pohledu. V poslednich letech
se rozsah a potencial aplikaci smisenych distribuci Siroce rozsitil. Aplikace smiSe-
nych distribuci se uplatnily naptiklad v astronomii, biologii, genetice, mediciné,
psychiatrii, ekonomii ¢i marketingu. Teorie v této kapitole je zalozena predevsim

na knihach [6, 8].

Definice 1.1 Necht f;(y;0;) je hustota p-rozmérného nadhodného vektoru Y; a
m >0, Yi=1,2,..., ¢, necht plati m; + w5 + ...+ 7. = 1. Pak hustotu

fly) = Zﬂfi(y; 0:) (1)

nazyvame smisenou distribuct.

Parametry m; reprezentuji vahu i-té slozky smisené distribuce ndhodného vek-
toru Y, fi(y; 0;) je hustota slozky s parametry zastoupenymi vektorem 6; a c je
pocet slozek modelu.

Funkéni hodnotu f(y) pak spocitame tak, Ze spocitame funkéni hodnoty
fi(y; 8;) v bodé y, vynasobime je prislusnymi vahami a seCteme je.

V této formulaci modelu je pocet slozek modelu stanoven. Mitize se ale stat, ze
je pocet slozek neznamy, a pak je nutno jej zjistit z dat spolu s dalsimi parametry.

V dalsi ¢asti této kapitoly se nejprve budeme kratce vénovat smisenym dis-
tribucim vytvotrenych z jednorozmérnych ndhodnych veli¢in a pak se blize sezna-
mime s vicerozmérnymi smisenymi distribucemi

Pro nazornost si uvedeme ptiklad.

Priklad 1.1 Nakreslete graf smisené distribuce dané vztahem

fly) =0.3x o(y; —3,1) + 0.3 X ¢(y;0,1) + 0.4 x ¢(y;2,0.5), (2)
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kde ¢ (y; j1, 0?) reprezentuje hodnotu hustoty normalniho rozdéleni v bodé y s da-

nou stiedni hodnotou p a rozptylem o2.

0.35

0.25f b

0.2} b

f(y)

0.15 b

0.1f b

0.051 i

Obrazek 1: Hustota smisené distribuce slozené ze 3 komponent

Z modelu je patrné, ze vahy jednotlivych slozek spliuji podminky, a ze hustoty
slozek jsou vycentrovany v bodech -3, 0, resp. 2. Graf této distribuce je zobrazen

na obrazku 1. Kéd pro vytvoreni grafu v Matlabu je uveden v ptiloze Al.

Obecné slozky smisenych distribuci mohou byt jakéhokoliv typu. Tzn. spo-
jité nebo diskrétni. Zde se budeme zabyvat pouze ptipady slozek se spojitym

rozdélenim, specialné s normalnim rozdélenim.

1.3 Vizualizace smisenych distribuci

Ukazme si nejprve, jakym zptisobem lze zobrazit podkladovou strukturu smi-
senych distribuci. Strukturou mame na mysli pocet slozek ve spojeni se stfednimi
hodnotami a rozptyly. V podstaté se snazime vizualizovat vicerozmérny paramet-
ricky prostor (i1, ..., fle, 0%, ..., 02 a T, ..., Te 1, tzn. 3c— 1 parametril) ve dvoj-

rozmeérné reprezentaci. Zpusob, ktery si zde uvedeme se anglicky nazyva dF plot.
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Ve vizualizaci pomoci dF' plotu je kazda slozka znazornéna kruhem, ktery je umis-
tén v bodé se souradnicemi [y, ;] a jehoz polomér je dan standardni odchylkou,
jejiz velikost zjistujeme ve sméru osy stienich hodnot.

Nyni si uvedme piiklad dF plotu (viz obrazek 2), ktery odpovidd modelu

z prikladu 1.1. Prvni kruh zleva koresponduje se slozkou s vdhou m = 0.3 a

©c o o o o
oo N » ©

Vahy slozek
o
S

@
0.2}

0.1f

0 1 1 1 1 1 1 1 1 1 J
-5 -4 -3 -2 -1 0 1 2 3 4 5
Stfedni hodnoty

Obréazek 2: dF plot modelu tfislozkové smisené distribuce

stfedni hodnotou p; = —3. Jeho polomér je roven 1. Podobné stfedni (resp.
pravy) kruh reprezentuji druhou (resp. tieti) slozku. VSimnéme si, Ze vizualizace
nam pomahd zjistit uz na prvni pohled, které slozky maji nejvetsi vahu a kde

jsou umistény. Zdrojovy kéd obrazku viz ptiloha A2.

1.4 Smisené distribuce dvou normalnich rozdéleni se stej-
nym rozptylem

V této casti si ukdzeme, jak vypadaji nékteré hustoty dvouslozkovych smise-

nych distribuci normalnich rozdéleni v proporcich m; a 7y, uvazujeme-li stejny



rozptyl o a stfedni hodnoty pi; a ji. Odpovidajici hustota ma tvar

fy) = mo(y; i, 0%) + mad(y; pa, 0%), (3)
kde
2 -1 1 1 2/ 2
6003 1:0%) = (2m) o exp |~ 0 /7] (@)

je hustota normalniho rozdéleni se stfedni hodnotou p a rozptylem o2.

Pokud se stfedni hodnoty od sebe dostatecné lisi, lze ocekéavat, Ze hustota
f(y) se bude podobat dvéma hustotdm polozenym vedle sebe. Takova hustota je
bimodalni. V piipadé, Ze jsou si stfedni hodnoty blizko, je hustotu unimodalni.
Na ukézku si uvedeme par grafii hustot pro rtizné hodnoty A v pfipadé, ze u; = 0,
w2 = A, 0 =1 a vahy slozek jsou si rovny, tj. m = m = 0.5 (viz obrazek 3, kdéd
priloha A3). Na této ukazce lze vidét, Ze s rostoucim A se tvar hustoty méni
z unimodalniho na bimodalni. Hranice této zmény je v nasem pripadé znatelna
pro A = 3.

Obecné A definujeme vztahem
A=p = 2| /o (5)

a nazgyvame Mahalanobisova vzdalenost mezi slozkami smisené distribuce nor-
malnich rozdéleni se stejnym rozptylem.

Jestlize jsou si stfedni hodnoty v modelu blizké, tak prekryti hustot slozek
inklinuje k zastinéni rozdilu mezi nimi (viz obrazky 3 (a),(b)). Obecné vysledkem
nebude symetricka hustota, pokud ovSem si vahy sloZek nejsou rovny (viz obrazek
3). Tento fakt je zobrazen na obrazku 4 (kéd analogicky jako v priloze A3), kde
jsme pouzili stejné stfedni hodnoty a rozptyl, ale zménili jsme hodnoty vah slozek
na m = 0.75 a my = 0.25.

V modelu lze také urcit pfesné vyjadieni sikmosti 7; a Spicatosti 7, hustoty
f(y) a to néasledovné (viz [8]),

ala —1)A3
T {aA2 4 (a+1)2)

M (6)



(@ (b)

0.4 0.4
0.3 0.3
2 0.2 202
0.1 0.1
0 0
-2 0 2 4 6 -2 0 2 4 6
y y
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Obrazek 3: Srovnani grafti hustot dvouslozkovych smisenych distribuci se stejnymi
vahami slozek, stejnym rozptylem o = 1 a strednimi hodnotami p; = 0, py = A
v ruzny variantach A: a) A=1, b)A=2 ¢)A=3, d) A=4

_a(a® —4a+1)A"
{aA? + (a +1)2}*

(7)

2

kde A je Mahalanobisova vzdalenost a a je pomér vétsi vahy slozky k mensi.
Situace se ponékud zkomplikuje, kdyz budeme uvazovat vice slozek v modelu a

nestejné rozptyly. To bude predmétem dalsi sekce.

1.5 Smisené distribuce normalnich rozdéleni s nestejnymi
rozptyly
Uzitecnou publikaci charakterizujici tvary hustot smisenych distribuci dvou

normalnich rozdéleni s nestejnymi rozptyly napsal I. Eisenberger (viz [2]). Napii-
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Obrazek 4: Srovnani grafit hustot dvouslozkovych smisenych distribuci s vahami
slozek m = 0.75 a my = 0.25, stejnym rozptylem o = 1 a stfednimi hodnotami
1 =0, ug = A v rizny variantdich A: a) A=1, b)A=2 ¢)A=3, d)

klad urcil, kdy hustota bude bimodalni a kdy ne. Plati-li nerovnost

A < (2703)/ {4(1+ k)}, (8)

kde k = 03 /0%, pak hustota f(y) nemtize byt bimodalni. Naopak, plati-li opacné

nerovnost

A? > (2703)/ {4(1 + k)}, (9)

pak existuje hodnota 7y, pro kterou je hustota f(y) bimodalni.

Problematika c-slozkovych smisenych distribuci normalnich rozdéleni je velmi
siroka. Abychom si ukazali proménlivost a flexibilitu, uvedeme si par priklada
grafii hustot pro rizné pocty slozek, stfednich hodnot a rozptylt (viz obrazek 5

a tabulka 1, kéd v Matlabu vytvorime analogicky jako v prfiloze A3).
11
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Obréazek 5: Grafy hustot rtiznych smisenych distribuci: a) Silné sikmd, b) Tri-
modalni, ¢) Spi¢at4d unimodalni, d) Asymetricky drap , e) Drap, f) Asymetricky
dvojity drap

Tabulka 1: SmiSené distribuce

Hustota f(y)

a) Silné sikma S ING{E) -1}, (2%

b) Trimodini SNL ) + HNE G+ HNO, ()
c) Spic¢ata unimodélni 3N(O 1) + %N(O7 (%)2)

d) Asymetricky drap IN(0,1) + 37 ,(2"/31)N(i + 3, (277/10)?)

e) Drap IN(0,1) + EZ 0 10 N(i/2 -1, (%0)2)
f) Asymetricky dvojity drap ZZ o 14060N(2z —1, ( )?) +

Z? 1300 N(-i/2, (100) ) +

+ 2 35N (/2. (555))

12
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1.6 Vicerozmérné smisené distribuce

V této casti si ukazeme jak vypadaji smisené distribuce slozené z hustot na-

hodnych vektort z normalnich rozdéleni. Obecny tvar vypada nasledovné

fy) = mfi(y; g, 20) + mafo(ys pho, X2) + o+ e fe(yy e, Be), y € RP.(10)

za podminek > 7, m; = 1,m; > 0. Vektor p; symbolizuje vektor stfednich hodnot

i-té slozky distribuce a matice ¥J; je jeji varianéni matice.

Priklad 1.2 Ukazme si jak vypada smisena distribuce dvou slozek z dvouroz-

mérného normalniho rozdéleni. Obecny predpis této smisené distribuce je
f(y) = mo(y; py, 21) + (1= m)d(Y; pg, Ta), (11)

kde

i) = ot en{-J- W'y} a2

a parametry maji tvar

11 Ha1 011 012 o11 Oh9
= s e ’E: ’E: ,71-6 0,1
=) = (i) 2= (T ) 2= () e

Poznamka: V rovnici (11) je 7 parametr, ve vztahu (12) je 7 konstanta.
Ukazme si tedy, jak bude vypadat smiSend distribuce s témito paramety (viz

obrazek 6, kéd priloha A4):

2 0 10 10
My = <2>7IJ’2: (0)721: (0 1)722: (0 1)77T:O75'

Vidime, Ze obé slozky se graficky projevi jako pravidelné ,kopce®, které se lisi
pouze svym umisténim. Pravidelnost je dana volbou varia¢nich matic, ve kterych
je nulova kovariance proménnych.

Ted zménime vahy slozek tak, Ze prvni bude mit vdhu 0,7 a druhé 0,3. Ostatni
parametry zatim ponechame. Pozménény graf smisené distribuce vidime na ob-

razku 7 (kéd analogicky jako A4).
13



Obrazek 6: Dvouslozkova smiSend distribuce dvourozmérného nekorelovaného na-
hodného vektoru se stejnymi vahami slozek

0.05

Obrézek 7: Dvouslozkova smiSené distribuce dvourozmérného nekorelovaného na-
hodného vektoru s dominantni slozkou

Vidime, zZe se, stejné jako v jednorozmérném piipadé, pouze snizil ,kopec* pred-
stavujici druhou slozku. Podobnou zménu vyvola zména rozptylu neékteré ze slozek
nédhodného vektoru. Napriklad zména parametru oy, z prvni distribuce z hodnoty
1 na 2,5 zpusobi zplosténi a protaZeni (ve sméru osy x1) ¢asti grafu pripadajici
prvni sloZce smiSené distribuce (obrazek 8, kéd analogicky jako A4).
Zajimavejsi jsou zmény grafi, kdyz ménime varianéni matice slozek. Zmény
stfednich hodnot ovlivni umisténi ,kopce“ v souradnicové soustave. Vykresleme

graf smiSené distribuce s parametry (viz obrazek 9, kéd analogicky jako A4):

2 0 1 0,5 1 -0,9
N1:<2)7H2:<0)721:<05 1 )722:(_09 1 )77T2075'

14
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Obrazek 8: Dvouslozkova smiSend distribuce dvourozmérného nekorelovaného na-
hodného vektoru s riznymi hodnotami rozptyli

Mutzeme pozorovat, ze oba ,kopce* se protahly. Smér a intenzitu protahnuti
urcuji variancni matice respektive korelace mezi proménnymi. Prvni slozka ma
adnou korelaci coz se projevi v protazeni ve sméru osy prvniho a tfetiho
klad korelaci 0, 5, t ho a tretih
kvadrantu. Druh4 slozka mé zapornou a vysokou korelaci, coz zptisobi, ze ,.kopec*
je vice protahly nez u prvni slozky a protazeni ve sméru osy druhého a ¢tvrtého
kvadrantu. Pripominam, ze pii nulové korelaci jsou ,kopce® pravidelné kulaté.

Na zavér si ukazme jesté piiklad pétislozkové smisené distribuce (viz obréazek 10,

2 Wl -
R

AN

L

Obréazek 9: Dvouslozkova smiSend distribuce dvourozmérného ndhodného vektoru
s kladnou i zapornou korelaci

kéd analogicky jako A4).
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0.15

o.1

0.05

Obrazek 10: Pétislozkova smisena distribuce dvourozmérného ndhodného vektoru

Stejné jako u smisenych distribuci z jednorozmérného rozdéleni miizeme ke zné-
zornéni vicerozmérné distribuce pouzit dF plot. V dvourozmérném piipadé bude
dF plot vypadat podobné. Zobrazime proto na obrazku 11 (kéd analogicky jako
A2) dF plot pro model:

™ = 07 57 Ty = 07 37 T3 = 07 27 By = (0 1)T7 Mo = (3 3)T7 M3 = (2 5)T

10 30,2 1 —0,4

1= 1) 0,4 1

Dvourozmerny df Plot
T T T

Obréazek 11: dF plot dvourozmérné smisené distribuce
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Stredni hodnoty jsou reprezentovany umisténim v soufadnicové soustaveé. Va-
rianc¢ni struktura v modelu je popsana elipsami se stfedy ur¢enymi stiednimi hod-
notami. Pro tplnost zkusme jesté vykreslit dF plot pro t¥irozmérnou tiislozkovou

smiSenou distribuci (viz obrazek 12, kéd analogicky jako A2) danou modelem:

100 30,20 1 —0,4 0
S,=l010), S=(02 1 1], S3=(-04 1 o0
001 0 1 3 0o 0 1

Interpretace obrazku je analogickd dvourozmérnému pripadu. Stfedni hodnoty
< I T T [ 77T [T T T

N\

Mu

O R N W MO O NO®

|
s

Mu
y

Mu
'x

Obrazek 12: dF plot dvourozmérné smisené distribuce

urcuji polohu elipsoidii, které jsou determinovany variancni strukturou. Barva
znazornuje vahu slozek.

Ukézali jsme si, ze smisené distribuce normalnich rozdéleni ndhodnych vek-
torti se vyznacuji velkou promeénlivosti. Jejich hustoty se mohou zna¢né ménit uz
pfi malych zménach vah, stfednich hodnot ¢i rozptyli (resp. varian¢énich matic).
Dilezité je také urceni poctu slozek distribuce. Nyni se podivejme na to, jak lze
ur¢it parametry v modelech smisenych distribuci, mame-li k dispozici namétena

data.
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2 Metody urcovani parametri

Definice 2.1 Necht Y = (Y3,...,Y,) je ndhodny vybér rozsahu n piislusny

statistickému znaku Y. Vybérovou funkci
— 1<
Y,==—> Y, 13
DN 1)

nazyvame vyberovy prumeér a funkci

1
n—1

52 =

> Yoy (14)

nazyvame empiricky rozptyl.

Definice 2.2 Necht Y = (Y,...,Y ) je ndhodny vybér rozsahu n z p-rozmérného

normalniho rozdéleni. Vybérovou funkei
n
— 1
Y, =- E Y, (15)
n <
J=1
nazgvame vybérovy primér. Ctvercovou matici rozméru p

W= Z (Y, -Y,) (Y;-Y,)" (16)

nazyvame Wishartova matice s n — 1 stupni volnosti a matici

1

n—1

S =

W (17)

nazyvame empirickd variancni (kovariancni) matice.

Poznamka 2.1 V nékterych pfipadech se misto S pouziva S’ = %W Matice S

a S’ resp. |S| a |S’| se pouzivaji jako analogie jednorozmérného rozptylu.

Definice 2.3 Necht f(y, 0) je hustota obecného rozdéleni s parametry uspotrada-
nymi ve vektoru @ = (6,,...,0;), pak Fisherova informacni matice pro parametr

0 je dana vztahem

F(6) = By yginf(5.6) | 1510/ (5.6)] (18)
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Méjme Yi,..., Y, ndhodny vybér rozsahu n, kde Y; je p-rozmérny nahodny
vektor s hustotou f(y;) na RP. V praxi Y; obsahuje ndhodné veliciny odpo-
vidajici p méfenim vykonanych v j-tém opakovani urcitého jevu. Necht Y =
(Y!,..., Y7 kde T znamend vektorovou transpozici. Vidime, Ze Y reprezen-
tuje cely vzorek, tj. n-tici bodt v RP. Realizaci ndhodného vektoru budeme ozna-
¢ovat malym pismenem. Napi. y = (y!,...,y%)? oznacuje realizaci ndhodného
vybéru, kde y; je pozorovana hodnota nahodného vektoru Y;. Dale predpokla-

dejme, 7e hustota f(y;) je smiSenou distribuci c slozek, tj.

fly;) = Zﬂ-ifi(yj; 0;). (19)

Nejprve se zaméfime na nahodny vybér, kde Y; je jednorozmérna nadhodna

veli¢ina, kterd je normalné rozdélena. Dostavame pak smisenou distribuci
Fly) = mid(y; i, o7), (20)
i=1

kde ¢(y; pi, 02) oznacuje hustotu normalniho rozdéleni se stfedni hodnotou pu; a
rozptylem o?. V tomto ptipadé nezndme ¢ — 1 vah jednotlivych slozek, ¢ stied-
nich hodnot a ¢ rozptyld. Celkem tedy 3c — 1 parametrii. V modelech smiSenych

distribuci je nejvétsi pocetni bfemeno spojeno pravé s odhadovanim parametri.

2.1 Metoda maximalni vérohodnosti

Metoda maximalni vérohodnosti (viz [5]) je jedna z metod, jak urc¢it odhady
neznamych parametrit daného rozdéleni pravdépodobnosti.

Necht Y = (Y1,Ys,...,Y,) je ndhodny vybér z rozdéleni spojitého typu s hus-
totou f(y;0), kde @ = (04, ...,0;) € O je vektor neznamych paramatru. Hustota
nahodného vybéru Y je

f(y;0) = Hf(yi; 0), (21)

protoze slozky ndhodného vybéru jsou nezavislé nahodné velic¢iny.
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Hustotu nadhodného vybéru Y uvazovanou pri zvoleném Y = y jako funkci
parametru 6, nazyvame funkci vérohodnosti a znac¢ime ji symbolem L(0), tedy

n

L) =[] fw:: 0). (22)

i=1

~ ~

Definice 2.4 Vektor statistik (vibérovych funkei) 8(Y) = (6,(Y),...,0:(Y)),
ktery pro Y = y spliiuje vztah

L(6(y)) > L(6), V0 c© (23)
nazyvame mazimdalné verohodnym odhadem vektoru parametri 6.

Definice maximalné vérohodného odhadu byla zaloZzena na nasledujici tivaze:
Necht mame dva rtizné body 0, a 0, z parametrického prostoru ©. Je-li f(y, 6,)
o mnoho mensi nez f(y,02), znamena to, ze vysledek pozorovani ¥ = y ma
pifi hodnoté parametru & = 6; o mnoho mensi pravdépodobnost nez pii hod-
noté @ = 6,. Jsme tudiz ochotni povazovat za spravnou hodnotu parametru 6
spise 05 nez 6. Proto je maximalné vérohodnym odhadem parametru 0 takovy
vektor statistik (Y) = (6,(Y), ..., 0,(Y)), ktery maximalizuje pro dany vyber
vérohodnostni funkci L(6) na mnoziné © moznych hodnot parametru 6.

V praxi se ukdzalo, ze je vhodné misto maximalizace funkce L(6) maximali-
zovat jeji logaritmus InL(0), ktery se nazyva logaritmickd funkce vérohodnosti.

Diilezitou podminkou pro dobré statistické vlastnosti maximalné vérohodného
odhadu je tzv. regularita (podrobnéji viz v [4]). Pozaduje se zde zejména nezavis-
lost mnoziny {y: f(y;0) > 0} na parametru 8 a existence spojitych parcidlnich
derivaci funkce L(6@) podle vSech slozek 0 pii kazdém y. Mame-li podminky re-
gularity splnény, pak je maximalné vérohodny odhad 6 dan fesenim soustavy
rovnic

OL(0)
90

InL(0
—0, j=1,...,k, Tresp. 9ImL®) _ j=1,...k  (24)
00,

Tyto rovnice se nazyvaji verohodnostni rovnice. Jestlize bychom chtéli odhadnout

funkci 7(0) vektoru paramentri 0, muzeme klast pfi pouziti metody maximélni
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vérohodnosti

7(0) = 7(01,...,0). (25)
Napftiklad pro odhad podilu rozptyld Z—z dvou slozek smisené distribuce lze pouzit
2
ziskané hodnoty of a 02 a jednoduse je vydélit.
Nyni si ukdzeme, jak bychom metodou maximalni vérohodnosti postupovali

pri urcovani parametri smisené distribuce slozené ze dvou normaéalnich rozdéleni.

Priklad 2.1 Pokusme se pomoci metody maximalni vérohodnosti najit odhady

parametri smisené distribuce ve tvaru
f(z) :7T1¢($§M1,U%)+(1—7T1)¢(93;M2>U§)> (26)

kde ¢(x; p,0%) je hustota norméalniho rozdéleni a m; € (0, 1).
Na prvni pohled vidime, ze vérohodnostni funkce bude mit 5 nezndmych pa-

rametri a mizeme ji zapsat nasledovné

L, i, 07,05, m) = [ [ (madb(as; o, 03) + (1 = )i i, 03)) . (27)

i=1

P1i zapisu s pouzitim explicitniho vyjadieni hustoty ¢ dostaneme tento tvar

L(,u1 2 0'2 0'2 7(1) = |n| (7(1 1 exp |:—7( : M1)2:| +
) y Y1y Y2y
i1 \/2710’1 20%

- T (mpesw [-E ] 1y e [ 22 2y

i=1

+ (1—71'1)

Nyni celou rovnici zlogaritmujeme. Dostavame tedy

n
In (L(,Ul, f12, 01,05, 771)) = —§ln(2ﬂ)+

- m (; — p1)? 1—m (1 — pa)?
> ln { “exp | - _ AT T k) 29
+ " <01 b { 207 } * 09 P 203 (29)

i=1
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Spocitame-li parcialni derivace podle vSech péti parametri a polozime je rovny
nule, ziskdme soustavu vérohodnostnich rovnic, jejimz fesenim bude maximalné
vérohodny odhad vektoru parametrii (pu1, o, 03, 02, 7). Pro zjednoduseni zépisu
si ozna¢me argument logaritmu v rovnici (29) symbolem ® a misto oznaceni
L(py, po, 0%, 02,71 ) budeme pouzivat pouze L. Pak maji parcidlni derivace nasle-
dujici podobu

n

5;21L _ Z@)_lw exp {_M} (30)

omL  n - 4 (1 (z; — p1)? 1 (7 — p2)?
om,  2m * Z(Q) <01 &P { 207 o9 exp 202 )

i=1

Polozime-li vyse uvedené parcialni derivace rovny nule, nalezneme maximélné
vérohodné odhady parametrti juiy, ii2, 02,05 a 7. V tomto piipadé to oviem neni

zcela jednoduché vzhledem k velkému poctu slozek a poctu dat.

2.2 Maximalné vérohodné odhady p a X

Ukézali jsme si postup jak urcit maximélné vérohodné odhady pro ndhodnou
veli¢inu (smiSenou distribuci z norméalniho rozdéleni). Ted si predvedeme postup

v piipadé nahodného vektoru z normalniho rozdéleni (viz [1]).
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Priklad 2.2 Méjme Y, ..., Y, ndhodny vybér z p-rozmérného normélniho roz-
déleni s parametry g a X. Abychom mohli ur¢it maximalné vérohodné odhady
parametri p a X, musime opét sestavit vérohodnostni funkci, kterou budeme
posléze maximalizovat pii danych pevnych hodnotach y. Vérohodnostni funkce

bude ve tvaru

n

s =T[en o oo { - w-w = w-m)  6)

1=1

Ted je nutno vérohodnostni funkci vhodné upravit.

L(p,%) = (2m)7 [T 7% exp {—% > w2 (y, - u)} =

}.

Jako v pfedchozim vyuzijeme vyhod pocitani s prirozenym logaritmem, tudiz

%! Z (y; — ) (y, — N)T

1=1

n

np n 1 _
InL(p, %) = = m2m — S |8 = o> (g —p)" S (g —p) =

1=1

1
= %ln%r - gln |Z| — §Tr

5t i (y; — ) (y; — )"

Nyni hleddme maximum InZL(u, ). Uréime parcidlni derivace podle p a X.

d
8—lnL % :--sz )=0. /%

Dostavame vysledny odhad vektoru stiednich hodnot. Odhadem je vybérovy prii-
mér (vztah (15)).

1 n
p==> vy, =7 36
- ;:1 Y =7 (36)

Obdobné budeme postupovat pro parametr X..

1 1 — _
ST N 5O i i —w =0,

i=1

i1nL(u, ¥) = g

0% B

23



Vysledny odhad varian¢ni matice je ve tvaru

n

S-S (-9 -9 = W= (37)

i=1

Ted bychom méli jesté ukazat, ze se opravdu jednd o maximum. Dikaz je uve-
den v [1]. Je vhodné podotknout, Ze jsme urcili maximélné vérohodné odhady
v pfipadé p-rozmérného normalniho rozdéleni. Kdybychom chtéli uréit odhady
pro nékolikaslozkovou smisenou distribuci z p-rozmérného norméalniho rozdélent,
byli by vypocet i vérohodnostni rovnice velmi komplikované. Proto byl vyvinut

postup, ktery si predvedeme v nasledujici casti.

2.3 EM (Expectation-Maximization) algoritmus

2.3.1 Algoritmus pro jednorozmérna data

V praxi velmi pouzivanou metodou odhadovani parametrti smisenych dis-
tribuci je tzv. EM algoritmus (viz [6, 7]). Je to itera¢ni algoritmus k nalezeni
maximalné vérohodnych odhadi. Tato metoda je uzitecna hlavné tehdy, kdyz
jednodussi metody nelze efektivné pouzit. Stala se standardnim nastrojem sta-
tistikli a je pouzivana v mnoha aplikacich.

Pottebujeme odhadnout parametry @ = (71, ..., e 1, fl1, .-+, fhes Toy e, 02).

Proto maximalizujeme logaritmickou vérohodnostni funkci danou vztahem

LOly1,. .., yn) = > _In [Z b (i s 0;3)] : (38)
k=1

i=1

Predpokladame, ze slozky distribuce existuji v pevnych proporcich a jsou dany 7.
Proto ma smysl pocitat pravdépodobnost, ze hodnota y; patii do jedné ze slozek
distribuce. Jelikoz pravdépodobonost prislusnosti hodnoty y; do nékteré ze slozek
je neznama, potfebujeme pouzit napriklad EM algoritmus k maximalizaci rovnice
(38). Pravdépodobnost, Ze hodnota pozorovéani y; patii do k-té slozky distribuce

(aposteriorni pravdépodobnost), mizeme zapsat nasledovné

- L a2
Falyi) = ZT’“QS(@{“‘{’“UA’Z) k=1,...,c;i=1,....n, (39)
I (i T, fr, G7)
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kde

Fss s fue 67) = > 70 (i fun 67). (40)
k=1

Vidime, ze aposteriorni pravdépodobnost je odhadovana na zakladé jinych od-
hadi. K ziskdni maxima funkce (38) musime najit prvni parcialni derivace podle
vSech parametrii a polozit je rovny nule. Tim dostaneme vérohodnostni rovnice.

Jejich feSenim jsou

~ 1 & 722 7
==y Y (42)

EM algoritmus je dvoukrokovy proces skladajici se z E-kroku a M-kroku. Tyto
kroky se opakuji dokud odhadované hodnoty parametri nekonverguji. Podivejme
se blize co jednotlivé kroky obnéaseji.

E-krok: Spocitame aposteriorni pravdépodobnost, ze i-té pozorovani nalezi
do k - té slozky, kterd je dana aktudlnimi parametry. Pouzijeme rovnici (39).
M-krok: Aktualizujeme odhady parametri pouzitim aposteriorni pravdépodob-
nosti a rovnic (41) az (43).

Cely EM algoritmus pro odhad parametrii smisené distribuce z normaélnich
rozdéleni mizeme shrnout do nasledujicich 5 kroki.

EM procedura
1. Urcete pocet slozek distribuce (c).

2. Urcete pocatecni odhad parametrt slozek smiSené distribuce (tj. urcit od-

hady vah slozek, stfednich hodnot a rozptyli).
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3. Pro kazdy bod y; urcete aposteriorni pravdépodobnost pouzitim rovnice

(39) a aktualnich hodnot parametri. Provadime E-krok.

4. Aktualizujte vahy slozek, stiedni hodnoty a rozptyly pouzitim rovnic (41)
az (43). Provadime M-krok.

5. Opakujte kroky 3 a 4 dokud odhady konverguji.

Ve kroku 5 prakticky pokracujeme iteracemi dokud se zména hodnot odhadi
ve dvou po sobé jdoucich iteracich neblizi urc¢ené toleranci. Je dobré si uvédomit,
Ze pri pouziti EM algoritmu pouzivame cely vzorek, coz zejména pro velké vzorky
klade vétsi naroky na vypocty.

Jak lze z dat urcit pocatecni hodnoty parametrt ;, u; a 0;7 Asi nejjedno-
dussim zpiisobem je setfidit data vzestupné podle naméfenych hodnot. Potom
v zévislosti na predpoklddaném poctu slozek (c¢) soubor dat rozdélime na polo-
viny, tretiny atd. Prvotnim odhadem vah bude m; = % Stredni hodnoty a rozptyly
odhadneme vybérovym priameérem (13) a empirickym rozptylem (14) spocitanymi

pro kazdou c-tinu souboru.

2.3.2 Algoritmus pro vicerozmérna data

V pripadé vicerozmérnych dat se v odhadovanych parametrech zméni roz-
ptyly na varian¢ni matice a pochopitelné se také zmeéni rozmeér vektoru stiednich
hodnot. Odhadujeme tedy @ = (71, ..., Te_1, by, -+ oy 21, - - -, 1) Budeme ma-

ximalizovat logaritmickou vérohodnostni funkci

Ly, .,y,) =Y In [Z T (Y5 Ky Ek)] : (44)

i=1

Reseni vérohodnostnich rovnic bude analogické. Dostaneme jej ve tvaru
1 n
n Z -
1=

n

N 1 TikY;
fr, ==Y == (46)

n 7
=1 'k
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$ 1 Zn Tir(Y; — ) (Y — () 7
= . 4

T

i=1

EM procedura bude mit stejny pribéh jako v predchozi c¢asti. Vétsi problém
vyvstane, kdyz budeme chtit néjakym zpiisobem urcit prvotni odhady vsech pa-
rametri. Postup jak urcit prvotni odhady stfednich hodnot a varianc¢nich matic
v pripadeé vicerozmérnych dat je uveden dale v kapitole 4. Jakmile ziskdme prvotni
odhady vsech potfebnych parametri, mizeme pouzit EM algoritmus. V dalsi ka-
pitole si ukazeme, jakym zptisobem lze metodu maximalni vérohodnosti resp. EM

proceduru pouzit pri feseni praktické tlohy.
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3 Priklad jednorozmérny

3.1 Motivace

Budeme aplikovat problematiku smisenych distribuci na studii, ktera byla za-
dana Laboratofi experimentalni mediciny pii Détské klinice LF UP a FN v Olo-
mouci. Studie zkoumé vyznam proteind mnohocetné 1ékové rezistence u 1écby
astma bronchiale a nespecifickych stievnich zanéti. Blizsi vysvétleni studie po-
skytl MUDr. Petr Dzubdk (viz nasledujici odstavce).

Jednim ze zkoumanych proteini je P-glykoprotein (P-gp). Je to transmem-
branova pumpa, ktera transportuje fadu lipofilnich latek vcetné glukokortikoste-
roidii. Proto se soudi, ze zvySené mnozstvi P-glykoproteinu a dalsich transport-
nich proteint je divodem rezistence na lécbu u nespecifickych stfevnich zanéti,
astma bronchiale a samoziejmé u nadorovych onemocnéni. Soucasné bylo po-
psano mnozstvi genetickych variaci genu pro tento protein, pricemz nékteré z nich
mély vztah ke stabilité a funkci proteinu. Data, ktera v minulych analyzach hod-
notila pouhé mnozstvi P-gp byla zna¢né nehomogenni a mohla byt ovlivnéna
vlastni metodikou stanoveni. Proto, abychom postihli i tyto odchylky, planujeme
provést mnohem komplexnéjsi analyzu. Jako prvni bude vysSetfeno mnozstvi pro-
teint lékové rezistence P-gp na lymfocytech periferni krve a to za pouziti imu-
nofluorescen¢nich technik pritokové cytometrie. Mnozstvi proteini bude srovna-

1

vano s klinickym stavem pacientii, genetickym profilem a expresi genti® na trovni

mRNA.

Vysledky, které jsme ziskali v pilotnich experimentech, ukazuji, ze mnozstvi
P-glykoproteinu se na lymfocytech periferni krve lisi a stratifikuje je do nékolika
skupin s nizkym, stfednim a vysokym mnozstvim P-gp. Pfitom kazdy pacient
je odlisny, jak mnozstvim P-gp, tak mnozstvim skupin. Software, ktery bézné
pouzivame pro hodnoceni flow cytometrickych dat neumoziuje mnohorozmérnou

analyzu kiivek za pouziti matematického modelovani. Proto je pro nas zajimavé

Exprese genu ( také genova exprese) je proces, kterym je v genu uloZena informace pieve-
dena v realné existujici bunéénou strukturu nebo funkci. Tomu realné odpovida nékolikakrokova
syntéza proteinu, ktery tomuto genu (tedy sekvenci jeho DNA) odpovidé (je jim kédovén) a
kterym (a nebo skrze néj) je pozdéji dand funkce realizovana (viz [3]).
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vytvoreni matematického nastroje, ktery bude umét prolozit témito histogramy
kiivky a pripadné odlisit jednotlivé skupiny a to i na zakladé jinych parametri,
jako je velikost a granularita. Vystupem by mély byt obecné pouzivané statis-
tické veliCiny, popisujici jednotlivé vzorky (medidn, pramér, varia¢ni koeficient a
dalsi). V idealnim ptipadé by bylo vhodné propojeni této analyzy do komplexu
mnohorozmérnych analyz hodnoticich vztahy mezi klinickym stavem pacienta,
jeho antropometrickymi parametry a parametry molekularni biologie a genetiky.
Tato studie si klade za cil zjistit vztah mezi odpovédi na terapii a proteiny mno-
hocetné 1ékové rezistence, pricemz vystupem by v dlouhodobém horizontu mohla

byt optimalizace a individualizace cilené terapie vyse zminénych pacientti.

3.2 Postup

Nasim tukolem bude zjistit pocet skupin a rozdéleni P-gp do téchto skupin
pro kazdého pacienta.

Priklad budeme tesit pomoci EM algoritmu. K dispozici mame vzorky od 8
pacientt. Kazdy vzorek obsahuje nékolik tisic méfeni, které budou tvorit nas
nahodny vybér. U kazdého pacienta nejprve provedeme tvahu o poctu slozek
distribuce. Ten lze zjistit naptiklad vytvorime-li histogram z naméfenych dat.
Podle tvaru histogramu usoudime na pocet slozek. Namérené hodnoty pak vze-
stupné setfidime a rozdélime je na tolik ¢asti, kolik je pocet slozek. Pro kazdou
¢ast takto rozdéleného souboru spocitame vybérovy primeér a vybérovy rozptyl.
Timto ziskdme véechny prvotni odhady vah (1/pocet slozek), stfednich hodnot a
rozptyll slozek smisené distribuce. Pak mtizeme pouzit EM algoritmus.

Pfi pocitani v Matlabu pouzijeme proceduru csfinmiz, ktera nam pro zadané

vstupni parametry spo¢ita odhady parametrii 7y, ..., 7 f, ..., fe @ 0%, ..., 02
Procedura ma nasledujici syntaxi:
[wts,mus,vars| = csfinmix(DATA, [u1, .. ., uc),l07, ..., 02],[m1, . . ., 7], Iterace, Tol),

kde [wts,mus,vars| jsou ziskané odhadované hodnoty parametri v poradi: vahy
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slozek, stFfedni hodnoty a rozptyly. Parametr DATA je vektor naméfenych hodnot,
pak nasleduji vektory prvotnich odhadu stfednich hodnot, rozptylt a vah slozek.
Parametr Iterace nam urcuje maximalni pocet iteraci, které bude algortimus po-
¢itat, a parametr Tol ndm dava omezeni na vypocet. Zadame si jim hrani¢ni
hodnotu rozdilu poc¢itanych parametrii smisené distribuce ve dvou po sobé jdou-
cich iteracich. Bude-li rozdil vSech hodnot parametrt distribuce ve dvou iteracich
jdoucich za sebou mensi nez tato hranice, vypocet se zastavi. Parametry Iterace

a Tol zaddavame omezeni na vypocet.

3.3 Vypocdet
3.3.1 1. pacient

Nejdfrive si vytvorme histogram, ze kterého pak provedeme odhad poctii slozek

ve smiSené distribuci.
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Obrazek 13: Histogram cetnosti hodnot P-gp v intervalech délky 10
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Z histogramu vidime, Ze hodnoty P-gp u 1. pacienta mizeme vysvétlit dvou,
pripadné tiislozkovou smisenou distribuci. Zkusme tedy spocitat parametry téchto
distribuci. Nejprve uvazujme pfipad dvouslozkové smisené distribuce. Z dat spo-
¢itdme prvotni odhady parametri. Dostaneme tedy m = 0,5;m = 0,5; 1 =
248, 2608; 115 = 500, 2781; 07 = 2863,8489 a 03 = 14135, 4044. Na zakladé téchto
hodnot spocitame pomoci EM algoritmu ptresnéjsi odhady parametri této distri-
buce. Ukazme si nyni blize, jak budou vypadat jednotlivé iterace a jaké budou
zmény hodnot parametrt (viz tabulka 2). Zdrojovy kéd k histogramu nalezneme

v priloze Ab5.

Poznamka: Pocateéni hodnoty rozptylii o? a o7 jsou pocitany pomoci funkce
VAR v programu MS Excel. Ta ovSem pouZiva ve jmenovateli pro vypocet vybé-
rového rozptylu n namisto n — 1. Tento rozdil se vSak vzhledem k velkému poctu

dat projevi minimalné a iterac¢ni postup jej prakticky vymaze.

Vidime, Ze hodnoty parametri se ustaluji pri toleranci 0,0001 az po dvousté
iteraci (viz tabulka 2). V nasem ptipadé ovSem tolerance 0,0001 pfedstavuje velmi
piisny pozadavek, nebot zadand data jsou celoc¢iselného charakteru. Spocitejme
tedy stejnym zptisobem odhady parametrii, uvazujeme-li t¥islozkovou smisenou
distribuci a ziskané hodnoty porovnejme. Pro zajimavost si jesté spocitejme pa-
rametry, uvazujeme-li obycejné normalni rozdéleni. Ziskané vysledky jsou v na-

sledujici tabulce 3.
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Tabulka 2: Prabéh iteraci

iterace ™ o L1 e ol o3
0 0,5 0,5 248,2608 | 500,2781 | 2863 | 14135
1 0,5033 | 0,4967 | 254,9605 | 495,1409 | 3548 | 16450
2 0,5100 | 0,4900 | 258,9748 | 494,2660 | 3871 | 17487
3 0,5163 | 0,4837 | 261,3258 | 494,8277 | 4056 | 17919
4 0,5219 | 0,4781 | 262,7587 | 496,0202 | 4174 | 18037
5 0,5271 | 0,4729 | 263,6886 | 497,5100 | 4255 | 17988
6 0,5318 | 0,4682 | 264,3412 | 499,1346 | 4315 | 17849
7 0,5363 | 0,4637 | 264,8401 | 500,8081 | 4362 | 17665
8 0,5405 | 0,4595 | 265,2531 | 502,4841 | 4400 | 17457
9 0,5445 | 0,4555 | 265,6178 | 504,1370 | 4434 | 17240
10 0,5483 | 0,4517 | 265,9547 | 505,7528 | 4465 | 17021
11 0,5520 | 0,4480 | 266,2750 | 507,3240 | 4493 | 16804
12 0,5555 | 0,4445 | 266,5847 | 508,8466 | 4520 | 16592
13 0,5589 | 0,4411 | 266,8869 | 510,3187 | 4545 | 16386
14 0,5621 | 0,4379 | 267,1830 | 511,7396 | 4570 | 16186
15 0,5652 | 0,4348 | 267,4736 | 513,1092 | 4594 | 15994
16 0,5682 | 0,4318 | 267,7587 | 514,4276 | 4617 | 15808
17 0,5711 | 0,4289 | 268,0384 | 515,6956 | 4640 | 15630
18 0,5738 | 0,4262 | 268,3123 | 516,9135 | 4661 | 15459
19 0,5764 | 0,4236 | 268,5800 | 518,0824 | 4683 | 15296
20 0,5789 | 0,4211 | 268,8414 | 519,2029 | 4703 | 15139
21 0,5813 | 0,4187 | 269,0960 | 520,2761 | 4723 | 14989
22 0,5836 | 0,4164 | 269,3438 | 521,3029 | 4743 | 14846
23 0,5857 | 0,4143 | 269,5843 | 522,2844 | 4762 | 14710
24 0,5878 | 0,4122 | 269,8174 | 523,2217 | 4780 | 14580
25 0,5898 | 0,4102 | 270,0431 | 524,1161 | 4798 | 14456
100 0,6234 | 0,3766 | 274,4408 | 539,4936 | 5158 | 12394
101 0,6234 | 0,3766 | 274,4435 | 539,5022 | 5159 | 12393
205 0,6237 | 0,3763 | 274,4845 | 539,6302 | 5162 | 12377
206 0,6237 | 0,3763 | 274,4845 | 539,6303 | 5162 | 12377

Tabulka 3: Odhady parametrt smisenych distribuci 1. pacienta

Parametry
c s W o?
1 1 374,2695 24377,82
2 (0,6237; 0,3763) (274,4845; 539,6303) (5162; 12377)
3| (0,6253; 0,3103; 0,0644) | (273,911; 512,405; 683,371) | (5064; 8661; 2428)
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Pomoci vyse uvedenych dat si sestrojme grafy a dI' ploty pfislusnych hustot

(viz obrazek 14, kéd analogicky podle A1, A2) a porovnejme je. Pti vizualizaci

dF ploti v Matlabu byly pii vypoc¢tu smérodatné odchylky stokrat zvétseny

pro zachovani nazornosti.
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Obrazek 14: Srovnani graft hustot a dF' plotd pro P-gp 1. pacienta pro jedno,
dvou a trislozkovou smisenou distribuci. Smérodatné odchylky u dF' ploti jsou

100 krat zvétseny

Z tabulky 3 a obrazku 14 vidime, zZe pti prechodu ze dvouslozkové na ttisloz-

kovou smisenou distribuci se 1. slozka prakticky nezmeénila, zatimco 2. slozka se

rozdélila ve dvé.

Otéazkou ted je, ktera z distribuci nejlépe odpovidé skutecnosti. Z jistotou lze

fici, Ze to urcité nebude obycejné normalni rozdéleni. Zkusme tedy jesté srovnat

grafy hustot s histogramem (viz obrazek 15, kéd pfiloha A6) a podivejme se

na vysledek.

Vidime, Ze spiSe bychom byli pro pouziti distribuce se tfemi slozkami, ktera
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Obrazek 15: Srovnani histogramu s hustotami dvou a trislozkové smisené distri-
buce pro P-gp 1. pacienta

zejména, pro vyssi hodnoty P-gp lépe odpovida histogramu. Pro presnéjsi rozhod-
nuti je mozno vyuzit shlukové analyzy a vhodnych statistickych testi (viz [8]),

coz ovSem prekracuje ramec této prace.

3.3.2 2. pacient

U 2. pacienta mtizeme na zakladé histogramu cetnosti P-gp (viz obrazek 16,
kéd analogicky podle A5) pfedpokladat 2 slozky s pfiblizné stejnou vahou. Spo-
¢itejme opét stfedni hodnoty, rozptyly a vahy slozek, uvazujeme-li 2 slozky a
porovnejme je s hodnotami, uvazujeme-li 3 slozky. Spoc¢tené hodnoty jsou uve-

deny v tabulce 4.

Tabulka 4: Odhady parametrt smisenych distribuci 2. pacienta

‘ Parametry ‘
c 7 L o?
2 (0,4919; 0,5081) (346,275; 521,134) (3430; 3188)
3| (0,5533; 0,026; 0,4208) | (356,119; 634,438; 515,83) | (4091; 802; 1743)

Vidime, Ze v pripadé t¥islozkové smisené distribuce ma 2. slozka pouze 2,6%
vahu. Proto bychom ji mohli i vypustit. Porovname-li stfedni hodnoty slozek
jednotlivych distribuci, tak se prili§ nelisi. Podivejme se proto jak vypada graf,
slozime-li dohromady histogramy c¢etnosti a grafy hustot dvou a trislozkovkych

distribuci P-gp 2. pacienta (viz obrazek 17, kod analogicky podle A6).
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Obrazek 16: Histogram cetnosti hodnot P-gp v intervalech délky 10

Na prvni pohled se grafy prilis nelisi, ale je patrné, Ze piitomnost 3. slozky
lépe koresponduje s histogramem pro vyssi hodnoty P-gp. VSimnéme si, Ze za-
timco u dvouslozkové distribuce jsou si vahy slozek témér rovny, coz vizualné po-
zname podle velikosti ,kopci®, tak u tiislozkové distribuce méa vétsi vahu slozka
se stfedni hodnotou 515,8. I pro niz$i hodnoty P-gp se jevi model trislozkové
smisené distribuce nepatrné lépe.

Matematicky bychom se asi opét priklonili k varianté se tiemi slozkami, ale
zalezi na osetiujicim lékari, ktery model pouzije, zvlasté pak, vezmeme-li v uvahu
nizkou vahu 2. slozky v ttislozkové smisené distribuci, kvtli které by z lékarského
hlediska mohla byt tato slozka vypusténa.

Podivejme se jesté na prubéh P-gp u dalsiho pacienta. Vyberme si pacienta,

jehoz histogram cetnosti P-gp se pomérné znacné odlisuje od ostatnich.
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Obrazek 17: Srovnani histogramu s hustotami dvou a trislozkové smisené distri-
buce pro P-gp 2. pacienta

Poznamka: Ve studii se jedna o 4. pacienta. V nasem prikladu to vSak bude 3.

a posledni pacient.

3.3.3 3. pacient

Podivejme se opét na histogram cetnosti P-gp (obrazek 18, kéd analogicky
podle A5) a provédme tivahu o poc¢tu slozek. Na prvni pohled lze ocekavat ,oby-
¢ejné” normalni rozdéleni, pripadné lIze pouzit distribuci se dvéma slozkami. Hod-

noty ziskané vypocty nam ukazuje tabulka 5.

Tabulka 5: Odhady parametrti smisenych distribuci 3. pacienta

‘ Parametry ‘
c 7 L o?
1 1 412,9849 12436
2| (0,2209; 0,7791) | (272,92; 452,701) (3995; 7688)

Srovnejme nyni grafy hustot ziskanych na zékladé parametri z tabulky 5
s histogramem ¢etnosti (viz obrazek 19, kéd analogicky podle A6).

Vidime, ze i v tomto pripadé lépe opovida dvouslozkova smisend distribuce,
nicméné i normalni rozdéleni nepopisuje P-gp u 3. pacienta s prilis velkymi odchyl-
kami. Jako i v predchozich pripadech se ukazalo, ze hustoty smiSenych distribuci

s vétsim poctem slozek lépe odpovidaji histogramu cetnosti P-gp.

36



P—-gp 4. pacient
400 T T T T T T T T

350

300

250

N
o
o

150

Pocet hodnot

100

50

0 100 200 300 400 500 600 700 800 900
Hodnota P-gp

Obrazek 18: Histogram cetnosti hodnot P-gp v intervalech délky 10

3.4 Shrnuti

Ukazali jsme si, jak vypadaji smisené distribuce pro P-gp u jednotlivych pa-
cintti. Je zfejmé, ze pro kazdého pacienta maji jiny prubéh. Proto je dobré 1éc¢bu
odvijet v zavislosti na ziskanych tvarech hustot P-gp pro kazdého pacienta, pro-
toze pii vSeobecné standardizaci by lécba nemusela byt efektivni. Z 8 pacienti
pouze u 1 vykazovaly hodnoty P-gp moZnost pouZiti normélniho rozdéleni (paci-
ent 3). U zbyvajicich 7 se chovalo jako dvou nebo tfislozkova smiSené distribuce.
Je zajimavé, ze u 4 pacientil meéla vétsi vahu slozka popisujici nizsi hodnoty P-gp
(pacient 1) a u 3 méla naopak vétsi vahu slozka popisujici vyssi hodnoty P-gp
(pacient 2). Lze pfedpokladat, ze ¢im vice slozek v modelu pouZijeme, tim lépe
odpovida histogramu cetnosti P-gp. Coz se ukazalo u vSech 3 pacientt. Vzhledem

k pomérné velké variabilité P-gp u pacientti je pfinosné déle tuto problematiku
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Obrazek 19: Srovnani histogramu s hustotami norméalniho rozdéleni a dvousloz-
kové distribuce pro P-gp 4. pacienta

zkoumat, abychom docilili co nejvétsi efektivity a specializace 1é¢by u kazdého
pacienta. Nyni prejdéme k dalsi ¢asti, ve které se budeme vénovat stejné pro-
blematice, ale situace se zkomplikuje tim, Ze budeme uvazovat dvourozmérné

smisSené distribuce.
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4 Priklad dvourozmeérny

Ve skutecnosti se studie z predchoziho ptikladu nezabyvala pouze jednim, ale
hned tfemi proteiny jimiz jsou P-gp, MRP a LRP. Proto budeme analyzovat
stejnd data, ale pouze ve dvojrozmérném pripadé. Pti vétsim poctu slozek na-
hodného vektoru roste totiz pocet odhadovanych parametri a to komplikuje a
zpomaluje vypocty. Je totiz nutno odhadnout vahy slozek ¢ — 1 parametrii, pri-
slusné stiednich hodnoty c¢p parametrii a taky prvky variacnich matici cp(p+1)/2
parametri, kde p je rozmér vektoru. To dava pro dvouslozkové a dvourozmeérné
smisené distribuce 11 parametrii. Kdybychom chtéli analyzovat vSechny 3 pro-
teiny, tak pri dvouslozkové distribuci dostavame celkem 19 parametrti a navic

bychom nebyli schopni vysledné distribuce graficky znazornit.

4.1 Postup

Opét pouzijeme funkci csfinmix, tentokrat ale s jinymi vstupnimi parametry.

[wts,mus,vars| = csfinmix(DATA, [y, ..., @ ),[21, - - ., 2], [m1, - - ., 7] Tterace, Tol)

V tloze bychom mohli obecné odhadovat parametry mq, ..., 7c, by, ..., K.
Y1,..., Xe My se ale omezime pouze na smisené distribuce ve tvaru (11). Jelikoz
vysSe zminéné parametry jsou vstupy funkce csfinmix, je nutné stanovit poc¢atecni
odhady téchto parametri. Nyni si ukdzeme jak.

Mame dano opakované méfeni P-gp a MRP v matici DATA s rozméry n x 2.
V pripadé jedné proménné stacilo soubor dat settidit dle velikosti, rozdélit na casti
dle uvazovaného poctu slozek a na zakladé tohoto rozdéleni urcit pocatecni
stfedni hodnoty a rozptyly. Zde to jiz nebude tak jednoduché. Je nutno dvojroz-
mérna data néjak transformovat, abychom provedli déleni souboru na tolik casti
kolik uvazujeme slozek. Provedeme proto projekci dat, jez se vSechna nachazi
v prvnim kvadrantu, na pfimky dané smérovymi vektory f;. Projekci provedeme

nasledujicim zptisobem:

hi = DATAx fi, i =1,2,3,4,5,6. (48)
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Vektory f; zvolime nasledovné:
cos 0 cos 22.5 cos 45
= (sinO) = <sin22.5) s = (sin45) ’

fi= cos67.5 fo = cos 90 fo = cos 135
+7 \sin67.5 /77" \sin90 /77 \sin135 )

Touto operaci ziskdme 6 vektori délky n. Z nich vytvorime histogramy (viz ob-
razek 20). Identifikaci 2 slozek smiSené distribuce provedeme orienta¢né a to podle
vzdalenosti dvou nejvétsich ,kopct“ v histogramech. Vybereme 2 histogramy, kde

jsou kopce nejvzdalenéjsi, a na zakladé téchto dvou vypocteme soufadnice fi; a

ft,. Plati totiz, ze

ffw=a, flps=as fip, =0bi, [f3py= Do (49)

Parametry aq, as, by a by jsou hodnoty, které odpovidaji z-ovym soutradnicim
vrcholt kopcil, pricemz a; a as ziskdame z prvniho histogramu a b; a by z druhého.
Mame tedy 4 linearni rovnice se 4 neznadmymi fiq1, ft12, fl21, & flog. VyTesime je
a ziskdme tak prvotni odhady stfednich hodnot pro proceduru csfinmiz. Ted uz
zbyva jen urcit odhady prvkia variacnich matic. Vahy slozek vezmeme v pomeéru
1:1. Pro odhad variac¢nich matic rozdélime soubor dat na dvé c¢asti a to pomoci
primky, ktera bude kolma na spojnici bodt fi; a fi,. Z kazdé ¢asti pak vypocteme

odhad varia¢ni matice podle vztahu

3=

S|

Z(yi - Yy, — Z_/)T- (50)

Cely postup miizeme shrnout do nékolika kroki.

1. Urcit smérové vektory

£ = (COSO‘), a€(0,180), i=1,2,...

sin o

Volit 7 alespon 5.
40



2. Vytvotit histogramy cetnosti pro vSechny projekce ziskané riznou volbou

smérovych vektori.

3. Vybrat ty 2 histogramy, ve kterych jsou ,kopce® nejvzdalenéjsi.

4. Vypocet fi; a f1, pomoci rovnic (49).

5. Vést kolmici na spojnici bodi f1; a fi, v jejim stfedu, kterd rozdéli soubor
dat na 2 c¢asti.

6. Z kazdé ¢asti vypocitat empirickou variancéni matici 3 dle vztahu (50).

7. Pokracovat iteracnim algoritmem pomoci funkce csfinmizx.

4.2 Vypocet
4.2.1 1. pacient

Poznamka 4.1 Cislovani pacientt se neshoduje s ¢islovanim v jednorozmérném
pripadé.

Na vstupu mame dan vektor DATA, ve kterém je zaznamenano opakované
meéreni P-gp a MRP. Celkem mame 17600 namérenych hodnot. Zvolime vektory
f1 az fg, jak bylo ukdzano. A vytvorime histogramy (viz obrazek 20, kéd v piiloze
AT). Podle kroku 3 vybereme prvni a ¢tvrty histogram. Podle nich pak zvolime
¢isla ai,as,b1 a by. Zvolme tedy a; = 280,a, = 530,01 = 500 a by = 1000.

Dosazenim do rovnic (49) dostavame prvotni odhad fi; a fi,.

. (280 . ( 530
Pr=1\ 4078 ) H*2= \ 7977 )"
Nyni urc¢eme délici primku. Vypoctem dostavame jeji analyticky tvar:
x+1,4796y — 1359,39 = 0. (51)

Piimka déli soubor 17600 méfeni v poméru 12922:4678 (data lezici pod:nad pfim-

kou). Ted lze spocitat empirické varianéni matice ¥; a Y.

¢ _ (8459 7289\ o _ (19194 5560
L=\ 7289 15038 ) 72— \ 5560 12532 ) °

41



f1=[cos0 sin0] f2 = [c0s22.5 5in22.5] f3 = [cos45 sin45)
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Obrazek 20: Histogramy cetnosti po projekci na rtizné sméry

Mame tedy vSechny potfebné parametry pro pouziti funkce csfinmiz. Po prove-

deni 50 iteraci dostavame vysledné odhady parametrii smisené distribuce:

. R 294.0 R 569, 7
7T:0770877 N1:(387 2)7 I’L2:(729 3)7

S 7802 T137 S 10005 8494
P\ 7137 15880 ) 27\ 8494 17133 )

Vyslednou smisenou distribuci 1ze vykreslit (viz obrazek 21, kéd v priloze AS).
Vypocitejme jesté korelacni koeficienty mezi jednotlivymi proménnymi v obou

slozkach distribuce. Zjistime tak jestli a jaka je zavislost mezi hodnotami namé-
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Obrazek 21: Graf odhadnuté smisené distribuce pro 1. pacienta

fenych proteinti. Vysledné hodnoty jsou

p%P—gp,J\/[RP) = 07 64127 p%P_gp7MRp) = O, 6488.

Mezi proteiny je tedy pomérné vysoka kladna zavislost, které si vSimneme na ob-
razku 22. Tento obrazek je hornim pohledem na graf odhadnuté smisené dis-
tribuce z obrazku 21. Kladna zavislost se projevi protahlym tvarem vrstevnic
smisené distribuce ve sméru osy prvniho a tietiho kvadrantu. Pro zajimavost
si jesté vykresleme distribuc¢ni funkci odpovidajici odhadnuté smisené distribuce
pro prvniho pacienta (viz obrazek 23, kéd v pfiloze A9).

Dosud jsme se zabyvali pouze odhadem parametri smisenych distribuci na-
hodnych vektorti. Mohla a méla by nés ale také zajimat presnost téchto odhadi.
K tomu vyuzijeme Fisherovu informacni matici.

Nyni si ukazeme jak spocitat empirickou Fisherovu informac¢ni matici mame-li
dan predpis smisené distribuce a data. V nasem piipadé bude Fisherova infor-
macni matice mit rozmér 11x 11, protoze vychazime z predpisu smisené distribuce
(11), ktery ma 11 parametri. Kvili pfehlednosti provedeme malou tipravu tohoto
vztahu. Misto parametru m pouzijeme parametr c. Pfedpis smisené distribuce ma

tvar

) = ez Il e {0 S - )+
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Obrazek 22: Korelace proteini P-gp a MRP

L= gen S en | S0-w S w6

My budeme navic pouzivat In(f(y)). Budeme muset spocitat parcidlni derivace

f(y) podle vSech 11 parametri.
_2 _1 1 Tl
5. = @m) B exp )~ (y— ) (Y ) -

~(om)Hmalewp {0 )5 (0 )|

0 2 :
—g’ij) =c(2m)72 Xy 2 exp {—%(?]— p) STy — “1)} *

J/

k

o1 1 B B B
*— {5 (¥ Sty —2u Sy + u?zllul)] =
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Distribucni funkce 1. pacient
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Obrazek 23: Distribu¢ni funkce odpovidajici odhadlé smisené distribuci prvniho
pacienta

=k —% (25 y+ 25 ')

0 0 2 1 1
Al = o e I e { <5 [ty )= )51 -
h

1t (eo 1 _
= h§ [‘21 1H ’ ‘21 1‘ 1 exp —§T7“ [(y— p)(y — Nl)TE1 1} +
~1073 1 Tx—1 1 T
+h Hzl H exp —§T7" [(y —p)(y— 1) X5 } _5(31— H1) (Y — )
Parcialni derivace podle p, a Y5 spocitame analogicky tak, Zze jen prohodime
indexy.
Poznamka: Parcidlni derivaci funkece f(y) podle p, je vektor parcidlnich derivaci

této funkce podle p11 a p1o. Podobné parcidlni derivaci funkce f(y) podle ¥ je

matice slozena z parcialnich derivaci této funkce podle jednotlivych prvka ;.

9
ofly) _ (G| oty _ [ F2 FY
Opy orw) | 9y, 9f(y) 9f(y)

Oz Oo21  Ooa2

Nyni jiz mame analyticky vyjadieny vSechny potiebné parcialni derivace k vy-
poc¢tu Fisherovy informac¢ni matice. Tu vypocitame tak, ze pouzijeme vsechny
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nameérené hodnoty a to tak, ze sestavime sloupcovy vektor vSech parcialnich de-

rivaci, do kterych dosadime odhadnuté parametry. Kazdy prvek v tomto vektoru

vydélime jesté hodnotou f(y). Nyni vezmeme prvni méfeni a dosadime jej do to-

hoto vektoru. Ziskdme tak ciselny vektor. Pak vezmeme druhé meéfeni a opét

dosadime. Timto zptisobem ziskdme matici Y rozméru 11 x n. Ted jesté vypoc-

teme vektor Y, kde Y

dle vztahu (53).

1

= -Y1, . Odhad Fisherovy informac¢ni matice pak zjistime

T on

R 1 _ _
F:E(Y—ln@)Y)(Y—ln@Y)T

(53)

~¢ N N PP ~ ANooa A oA a A Al \T
Oznacime-li B = (¢, fu1, fl12, flo1, fl22, 011, O12, 022, 014, G149, 5y)" vektor odha-

dovanych parametrii, tak presnost odhadt zjistime z diagonaly varian¢ni matice

tohoto vektoru, na které jsou rozptyly odhadu jednotlivych parametri. Varianc¢ni

matici ziskdAme pomoci vypoctené Fisherovy informac¢ni matice podle vztahu 54.

A A1
var(B) = F .
ofY,) 1 (Y, 1
dc f(Y,)’ oc [f(Y,) "
oY) 1 (Y, 1
opir f(Y,)? opn f(Yy) "
ofY,) 1 (Y, 1
Opz f(Y,)> Owz f(Yy)’ "
oY) 1 (Y, 1
Op21  f(Y,)> Ouar f(Y,)’ "
ofY,) 1 Y, 1
Oz f(Y,)’> Ouze f(Y,)’ "
oY) 1 (Y, 1
do11 f(Y,)’ Ooun f(Yy) "~
of(Yy) 1 of(Yy) 1
doiz f(Y,)’ 0oz f(Y,)’ "
of(Y,) 1 of(Yy) 1
doaz f(Y,)? Doz f(Y,)’ """
of(Yy) 1 of(Yy) 1
doty f(Yy) Doy f(Yy)? T
oY) 1 fY,) 1
9oty f(Yy)) Ooin f(Yy)? " 7°
of(Yy) 1 of(Yy) 1
dosy f(Y)? Oopy f(Yy)? "7 77

A

Ukazme si tedy, jak vypada diagondla var(3), na které jsou

jednotlivych parametri. Po vypoctu dostavame hodnoty

A

(54)

rozptyly odhadi

Diag(var(8)) = (0, 86; 34420; 62654; 184980; 231420;
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2,42%1077;2,49 % 1077;4,54 % 107%;3,49 % 107 7;4,65 % 1077;9, 34 107%).

Presnost odhadt je dana smérodatnymi odchylkami, které v tomto pripadé jsou
(0,93;185; 250; 430; 481; 0, 0005; 0, 0005; 0, 0002; 0, 0006; 0, 0007; 0, 0003).

Vsimnéme si, ze odhady vahy prvni slozky a stfednich hodnot maji vysoké
smérodatné odchylky vzhledem ke svym hodnotdm. Predevsim smérodatné od-
chylka odhadu vahy prvni slozky je dokonce vyssi (0,93) nez samotny odhad pa-
rametru (0, 7087), ktery muze nabyvat hodnot pouze na intervalu (0, 1). Zatimco
odhady prvkid varian¢ni matice jsou velmi presné. Miuze to byt zptisobeno na-
priklad spatnou volbou délici kiivky pro vypocet empirickych varian¢nich matic.
Predpoklad normality by vzhledem k vysokému poctu a charakteru dat nemél byt
porusen. Srovnejme pro piehlednost jesté odhady a jejich smérodatné odchylky

do tabulky (viz tabulka 6).

Tabulka 6
| Parametry |
c H11 Hi2 H21 H22
odhad 0,7087 | 294,0 | 387,2 | 569,7 | 729,3
smérodatna odchylka 0,93 185 250 430 481
smérodatnad odchylka/odhad (%) | 131% | 63% | 656% | 75% | 66%
O11 012 022 it ol 0%
odhad 7802 7137 | 15880 | 10005 | 8494 | 17133

smérodatna odchylka | 0,0005 | 0,0005 | 0,0002 | 0,0006 | 0,0007 | 0,0003

Podivejme se jesté jednou na volbu délici kiivky pfi vypoctu empirickych
varian¢nich matic. Urdcili jsme, ze kiivka ma tvar x + 1,4796y — 1359,39 = 0.
Zkusme ji zakreslit do grafu spolecné s daty (viz obréazek 24, kéd v ptiloze A10).
Vidime, ze délici kiivka je urcena pomérné nevhodné, protoze zasahuje i do dru-
hého ,shluku“, ktery vymezuje druhou slozku distribuce. Proto zkusme urcit de-
lici kiivku 1épe. Vyzkousenim nékolika tvart piimek jsme odhadli, Ze délici kiivka
by mohla mit tvar 4, 8z +y— 2550 = 0 (viz obrazek 25, kéd analogicky jako A10).
Pro tuto novou volbu vypocitejme odhady parametrii smisené distribuce a inverzi

Fisherovy informa¢ni matice a srovnejme je s pivodnimi hodnotami.
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Obrazek 24: Volba délici kiivky

Pivodni odhady:

. . 294, 0 . (569,7

7T_0770877 I’l’l_(387’2)7 “2_<729’3)7

& 7802 7137 ¢ _ (10005 8494
V7 N\ 7137 15880 /0 72 \ 8494 17133 )

Nové odhady:

o - (278,9 (5571
= 10,6553, “1_<381,5)’ ’“"2_<688,7)’

o _ (5433 6273 ¢ _ (10158 11897
V7V 6273 16944 /0 2~ \ 11897 25043 /-

Vidime, Ze odhady stfednich hodnot se nepatrné posunuly, i diilezitost slozek

v distribuci se moc nezménila. Hodnoty v prvni variancéni matici se snizily, tudiz

mame mensi rozptylenost hodnot kolem stiedni hodnoty, ale ve druhé varianc¢ni

matici se hodnoty naopak zvysili. Celkové lze Tici, Ze nova volba délici kiivky pfilis

odhady nezlepsila, i kdyz, jak uvidime dale, néjaké pozitivni zmény probéhly.

Nakonec se jesté podivejme na inverzi Fisherovy informac¢ni matice, respektive
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Obrazek 25: Nova volba délici kiivky

na jeji diagonalu. Pfipominam, ze nas znepokojovali vysoké smérodatné odchylky
odhadi stfednich hodnot a vahy prvni slozky distribuce. Prvky z diagonaly jsou

uspofadany ve vektoru
(0, 78;142;217; 339; 409; 0, 0008; 0, 0006; 0, 0002; 0, 0007; 0, 0007; 0, 0002).

Srovnejme opét nové odhady parametri s prislusnymi smérodatnymi odchylkami

v tabulce 7.

Tabulka 7
| Parametry |
c H11 M2 H21 H22
odhad 0,6553 | 278,9 | 381,5 | 557,1 | 688,7
smérodatna odchylka 0,78 142 217 339 409
smérodatna odchylka/odhad (%) | 119% | 51% | 57% | 61% | 59%
O11 012 022 o1 0l 0%
odhad 7802 7137 | 15880 | 10005 | 8494 | 17133

smérodatna odchylka | 0,0008 | 0,0006 | 0,0002 | 0,0007 | 0,0007 | 0,0002

Je vidét, ze presné€jsi volba délici ¢ary pomohla ke zpfesnéni odhadi. To orien-
tacné mérime podle procentualniho podilu hodnoty smérodatné odchylky a hod-

noty odhadu. Pfi pivodni volbé délici ¢ary jsou tyto podily piiblizné o 10 — 20
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procentnich bodt vyssi nez pri zpiresnéné volbé délici ¢ary. Sledovat podily u hod-
not odhadid prvka variancnich matic je v tomto piipadé bezpfedmétné. Na za-
kladé tohoto zjisténi by se dalo usuzovat, Ze ¢im presnéjsi volba délici cary bude,

tim presnéjsi odhady dostaneme.

4.2.2 2. pacient

Zkusme jesté stejnym postupem odhadnout parametry pro jiného pacienta,
abychom se presvédcili o jedinecnosti hodnot P-gP a MRP u kazdého pacienta.
Pripomenme si radéji, ze priubéh hodnot P-gp a MRP modelujeme dvouslozkovou

dvourozmérnou smisenou distribuci z normalniho rozdéleni ve tvaru:
f(y) = W¢(y7 M, El) + (1 - 7T)¢(y, Mo, 22)7 (55)

Stejné jako v predchozi ¢asti musime nejprve urcit prvotni odhady vSech 11 para-
metri, abychom mohli pouzit proceduru csfinmiz. Vektory f; volime stejné. Poté
provedeme projekce dat a ziskame vektory h; (podle vztahu (48)). Pro kazdy vek-
tor h; vytvorime histogram cetnosti, abychom mohli ur¢it hodnoty aq, as, by, bs,
pomoci kterych uréime prvotni odhady fi; a fi, (viz 49). Podivejme se na to, jak
histogramy hodnot z vektori h; vypadaji (viz obrazek 26, kéd analogicky jako
AT).

Ted bychom méli vybrat ty dva histogramy, jejichz ,kopce“ jsou nejvzdale-
néjsi. V tomto pripadé to neni tak jednoznacné. Vyberme tedy histogram hy a
pro lehéi vypocty hs. Hodnoty ay,as, by, by volime nésledovné: a; = 390,ay =

630, b; = 300, b, = 520. Vypocteme prvotni odhady jsou

. (297,77 . [466,3

=1\ 300 )"#27\ 520 )
Ted nam chybi urcit jen prvotni odhady varian¢nich matic 31 a 3. K tomu
potfebujeme data rozdélit. Z predchoziho prikladu vime, ze bychom meéli délici
c¢aru urcit pokud mozno co nejpresnéji. Na zakladé vykresleni vsech dat jsme

urcili jeji analyticky tvar nasledovne:

32+ y — 1500 = 0. (56)
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f1=[cos0 sinQ] f2 = [c0s22.5 sin22.5] {3 = [cos45 sin45]
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Obrazek 26: Histogramy cetnosti po projekci na rtizné sméry

Podivejme se na celou situaci na nasledujicim obrazku 27 (kéd v pfiloze A11).

Vidime, Ze jsme se piibliznym postupem (tj. volbami aj,as, by, by) netrefili
s hodnotami parametrii p; a p, zcela idedlné. Nicméné, odhady ponechejme a
podivejme se, jak si s touto nepresnosti poradi iterac¢ni metoda csfinmiz. Nékdo by
mohl namitnout, ze by bylo lepsi urc¢it prvotni odhady fi; a f1, pfimo z obrazku
27. Bylo by to mozné, ale pouze v piipadé dvourozmérné smisené distribuce.
Pri vétsim rozméru uz nejsme schopni efektivné data znazornit, abychom mohli
provést primy odhad. Proto se i zde drzime vyse zminéného postupu.

Vypoctéme jesté odhady parametri ¥; a ¥y a pouzijme metodu csfinmix
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Obrazek 27: Volba délici ¢ary u 2. pacienta

k urceni vyslednych odhadt parametri pro 2. pacienta. Dostavame hodnoty

> 2679 6201

_ (33032679  _ (4087 4680
1= » =27\ 4680 12383 )

Po provedeni 50 iteraci dostavame vysledné odhady parametrii smisené dis-

tribuce:

. ) 2522\ . 4410
7T:0762517 I’l’1:<302 2)7 “2:<584 1)7

M>

(3556 2848 ¢ _ (4955
L7\ 2848 6116 /> 2 \ 5751

5751
13951 ) -

Poznamka 4.2 Vzhledem k tomu, Ze operujeme se vstupnimi daty, které maji

cca 15000 x 2 hodnot, trvaji vypocty pomérné dlouho.

Pozadované presnosti bylo

dosazeno pii pouziti 50 iteraci a vypocet odhadt trval 244 sekund. Kdybychom

pouzili 60 iteraci, doba vypoctu by se zvysila na 320 sekund, pti 100 iteracich

na 556 sekund. Tak bychom mohli pokracovat dale. Pfipomenme si, ze v pripadé

jednorozmérné smisené distribuce jsme pouzili 206 iteraci a vypocet trval jen

nékolik sekund.
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Nejprve se podivejme zdali a jak se zménila poloha prvotnich odhadi fi; a

[ty. Zména je zndzornéna na obrazku 28 (kéd analogicky jako A11). Pozorujeme,
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Obrazek 28: Posun hodnot odhadt fi; a f1,

ze vysledné odhady parametri p; a p, odpovidaji datim mnohem lépe nez ty
prvotni. Mizeme konstatovat, ze metoda csfinmix si dokaze poradit i s neuplné
presnymi prvotnimi odhady parametri.

Déle se podivejme na graf odhadnuté smisené distribuce a na jeji distribu¢ni

funkci (obrazky 29,30, kéd analogicky jako A8 ,A9). VSimnéme si velikosti ,,kopce*

1
MRP o 200 400 600 800 000

Obrazek 29: Graf odhadnuté smisené distribuce pro 2. pacienta
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prvni slozky, ktera je vétsi nez u prvniho pacienta, i pfesto, ze vaha prvni slozky
druhého pacienta je mensi nez vaha prvni slozky pacienta prvniho. Pric¢inu této
skutecnosti mizeme pozorovat na obrazku 31 (kéd analogicky jako AS8). U dru-
hého pacienta jsou slozky smisené distribuce polozeny blize k sobé nez u prvniho.
Vice se vzajemné prolinaji, a to zpusobuje, vySe popsany jev. Graf distribuc¢ni

funkce smisené distribuce druhého pacienta vypada nasledovné:

Distribucni funkce 2. pacient
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Obréazek 30: Distribuc¢ni funkce odpovidajici odhadlé smisené distribuci druhého
pacienta

Dopliime jeste velikosti korelacnich koeficientd mezi P-gp a MRP v obou
slozkach distribuce a projekei smisené distribuce z ptac¢i perspektivy (viz obrazek
31), kterou srovname s prvnim pacientem. Na obrazku uvidime pfedevsim polohu
jednotlivych slozek a jejich protazeni, které je urceno korelacnimi koeficienty.
Korela¢ni koeficienty maji ptiblizné stejné hodnoty, tudiz je zachovana vzajemna

zévislost mezi jednotlivymi proteiny.

p%P—gp,J\/[RP) — 0, 6107, p%P—gp,MRP) — O, 6917

Na zavér vypoctl se jesté zaméfime na presnost odhadi. Opét pouzijeme

empirickou Fisherovu informac¢ni matici a zjistime, jaké jsou hodnoty na diago-
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Obréazek 31: Srovnani odhadnutych smisenych distribuci obou pacienti z ptaci
perspektivy

~

nale var(3), na které jsou rozptyly odhadu jednotlivych parametri. Po vypoctu

dostavame hodnoty

~

Diag(var(8)) = (0,5063; 13017; 19764; 40827; 123470;

9,36 %1077;1,05% 107%3,13%107";5,92% 107 7;6,87 x 1077; 9,86 * 10~%).
Presnost odhadii ur¢ime pomoci smérodatnych odchylek, které v tomto pripadé
jsou

(0,711;114; 141; 202; 351; 0,0009; 0, 0010; 0, 0006; 0, 0008; 0, 0008; 0, 0003).
Opét pozorujeme, ze odhady prvkd varianénich matic jsou velmi pfesné, zatimco

odhady stfednich hodnot a vahy prvni slozky presné az tak nejsou. Pro lepsi

posouzeni se na pfesnost odhadt podivejme v tabulce 8.

Tabulka 8
Parametry
c H11 H12 H21 H22
odhad 0,6251 | 252,2 | 302,2 | 441,0 | 584,1
smérodatna odchylka 0,711 114 141 202 351
smérodatné odchylka/odhad (%) | 114% | 45% | 47% | 46% | 60%
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011 012 022 h 0y T2
odhad 3556 2848 6116 4955 5751 13951
smérodatna odchylka | 0,0009 | 0,0010 | 0,0006 | 0,0008 | 0,0008 | 0,0003

Nyni zkusme shrnout vSechny vysledky a poznatky, kterych jsme v piipadé dvou-

rozmérnych smisenych distribuci docilili.

4.3 Shrnuti

Ukazalo se, ze metody odhadi parametr smisenych distribuci v pripadé vice-
mérnych. V nasem ptikladé jsme odhadli parametry dvourozmérnych dvousloz-
kovych smiSenych distribuci pro 2 pacienty. Kdybychom chtéli data modelovat
pomoci viceslozkovych (3,4,..) smiSenych distribuci, vznikaly by dalsi problémy
typu: ,,Jak rozdélit soubor dat pro urceni pocatec¢nich parametra?“, ) Jak identifi-
kovat slozky?“. Proto jsme se v této praci zamérili pouze na dvouslozkové smisené
distribuce, u kterych tyto problémy jsou pomérné snadno fesitelné.

Opét se potvrdila individualita jednotlivych pacientt v pfipadé namérenych
hodnot P-gp a MRP, ktera se projevila predevsim umisténim stfednich hodnot
slozek. Pro vétsi prikaznost jesté pridame odhadlé stfedni hodnoty dalsiho paci-
enta a vysledky srovname v tabulce 9. Predev§im hodnoty p, se méni pomérné
hodné. I pomér vah slozek v modelech se lisi. U prvniho pacienta mé prvni slozka

vahu 70,91%, u druhého 62,51% a u tretiho pouze 49,17%.

Tabulka 9
‘ Srovnani odhadnutych stiednich hodnot ‘

pacient 1 | pacient 2 | pacient 3
M1 294 252 299
H12 387 302 246
H21 270 441 461
H22 729 584 474

Vahy slozek a rtizné hodnoty prvki odhadnutych varianénich matic zptisobuji
to, ze vysledné grafy smisenych distribuci se chovaji analogicky, jak je to ukazano

na obrazcich 8 a 9 (nejvice jsou ovlivnény velikosti ,kopct* slozek). Je to patrné
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na obrazku 32 (kéd analogicky jako A8) , kde ,kopce“ v pfipadé tietiho pacienta
jsou rizné vysoké, prestoze vahy jsou témér v poméru 1:1.

x10° x10° X

. . x10 .
Pacient 1 Pacient 2 Pacient 3

15

05 05
R A
1000 1000
500 500
MRP 0 500 1000 MRP 0 500 1000 MRP 0 500 1000
’ P-gp 0 P-gp 0 P-gp

Obrazek 32: Srovnani odhadnutych smisenych distribuci vsech pacientii

Naopak korelace v datech vykazovala pomérné stabilni charakter. U prvni
slozky jsme urcili korelac¢ni koeficienty postupneé 0,6412, 0, 6107 a 0,7101. U druhé
0,6488, 0,6917 a 0,7103. Dale se ukazalo, ze postup, ktery jsme pouzivali, dava
velmi presné odhady prvki varian¢nich matic v modelu, ale odhady vah a stied-
nich hodnot maji presnost o nékolik Ta4di mensi. Dulezitou roli pfi odhadovani
méla i volba délici ¢ary. Pozitivné mtizeme hodnotit to, Ze metoda csfinmiz i
pres nepfili§ presné prvotni odhady stfednich hodnot (viz pacient 2) poskytuje

odhady, které odpovidaji datim pomérné dobre.
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Zavér

Seznamili jsme se s tim, co jsou to smisené distribuce, jak mohou vypadat a
jak 1ze odhadovat parametry smisenych distribuci. V prvni kapitole jsme si uka-
zali, ze smiSené distribuce se vyznacuji velkou promeénlivosti a prizptisobitelnosti.
[ malé zmény hodnot vah, stifednich hodnot ¢i prvkt varian¢nich matic mohou mit
velky vliv na celkovy tvar smisené distribuce. Pravé flexibilita a rozmanitost déla
ze smisenych distribuci uziteény nastroj pro modelovani rtizné skaly dat. Zjistili
jsme, Ze i pres velkou pocetni naro¢nost metody maximalni vérohodnosti existuje
efektivni feseni odhadovani parametri v podobé EM algoritmu. Ten umoznuje
najit feseni vérohodnostnich rovnic jednoduchym iterativnim zptisobem.

V nasem prikladé se ukazalo, ze kazdy z pacientii, na kterych byla studie
provadéna, méa unikatni prubéh P-gp a MRP. A proto je cenné, Ze muzeme pou-
zit metodu, ktera tuto nehomogenitu dokaze modelovat. Nejprve jsme modelovali
pouze prubéeh P-gp. V této ¢asti byl postup pomérné jednoduchy a vysledky véro-
hodné odpovidali dattim. Zjistili jsme, ze pouziti vétsitho poctu slozek v modelu
zajisti lepsi analyticky popis dat. Poté jsme analyzovali dvourozmérny soubor
dat (P-gp, MRP). Postup odhadovéani parametri jiz nebyl tak jednoduchy. Mu-
seli jsme najit zptisob jak data rozdeélit na casti, ze kterych pak bude mozné urcit
pocatecni odhady parametrii. V obou ¢astech jsme pouzili proceduru csfinmiz.
Dospéli jsme k pomérné uspokojivym odhadtiim. Pirekvapiva byla rozdilnost pres-
nosti odhad® parametrit v modelu, kterou jsme urcili pomoci inverze empirické
Fisherovy informacni matice.

Pti zpracovavani tematu jsme nenarazili na vaznéjsi problémy. Jednim z pro-
blémii, ktery by bylo vhodné zkoumat, je urceni poctu slozek smisené distribuce
tak, abychom jich nepouzivali zbytecné moc, ale aby také dobte popisovaly data.
K tomu je potieba pouziti vhodnych statistickych testii, coz by mohlo byt pred-
métem dalsiho rozsifeni této prace. Dalsi potencialni problém se tyka vypocetni
techniky. P1i zpracovavani dat ze studie jsme pocitali s Tadové tisici udaji a to
se projevilo i na rychlosti vypoc¢ti v programu Matlab. Obvykle nam zpracovani

béznych tloh nezabere déle nez nékolik sekund. Zde trval vypocet odhadt spolu
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s vypoc¢tem presnosti odhadi priblizné 7 minut. Proto by nas méli zajimat tech-
nické naroky na vypocty v ptipadech, kdybychom pocitali s vétsimi objemy dat
¢i slozitéjsimi vzorci. Jiny problém se tyka presnosti odhadi, ktera jiz byla vyse
zminéna.

Téma smisenych distribuci zahrnuje Sirokou problematiku. V nasi praci jsme
se zaméFili pouze na spojité ndhodné veli¢iny (vektory) z normdlniho rozdéleni.
Cela tematika by si jisté zaslouzila vétsi pozornost. Vérime, ze cela prace Ctenafe
obohati a ze mu poskytne nejen dostatecné mnozstvi informaci o problematice,

ale dokaze i inspirovat.
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Piilohy
Priloha A1l

Koéd v Matlabu pro vytvoreni grafu tiislozkové smisené distribuce s danymi pa-

rametry

x=linspace(-6,5);

% create the model - normal components used

mix = [0.3 0.3 0.4]; % mixing coefficients

mus [-3 0 2]; % terms means
vars = [1 1 0.5];
nterm= 3; % use Statistics toolbox function to evaluate normal pdf.
fhat = zeros(size(x));
for i= 1l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));

end

plot(x,fhat)

Priloha A2

Koéd v Matlabu pro vytvoreni dF' plotu modelu ttislozkové smisené distribuce.

mu = [-3 0 2];
wts = [0.3 0.3 0.4];

covm = [1 1 0.5];
minx = -b;
maxx = b5;

csdfplot (mu,covm,wts,minx,maxx)

tick = (maxx-minx)/10;

set(gca,’Ytick’ ,minx:tick:maxx)

set(gca, ’Xtick’ ,minx:tick:maxx)

set(gca, ’YTickLabel’,’0[0.1/0.2/0.3/0.410.5/0.6/0.710.810.9]1”)
xlabel(’S’),ylabel(’V’)
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Priloha A3

Koéd v Matlabu pro vytvoreni grafu dvouslozkovych smisenych distribuci se stej-

nymi vahami

x=linspace(-3,7);
mix = [0.5 0.5]; mus = [0 1]; vars = [1 1]; nterm= 2;
fhat = zeros(size(x));
for i= 1l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end
subplot(2,2,1); plot(x,fhat); title(’(a)’); axis([-3 7 0 0.4]1);
xlabel(’y’); ylabel(’f(y)’);

x=linspace(-3,7);
mix = [0.5 0.5]; mus = [0 2]; vars = [1 1]; nterm= 2;
fhat = zeros(size(x));
for i= 1l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end
subplot(2,2,2); plot(x,fhat); title(’(b)’); axis([-3 7 0 0.4]);
xlabel(’y’); ylabel(’£(y)’);

x=linspace(-3,7);
mix = [0.5 0.5]; mus = [0 3]; vars = [1 1]; nterm= 2;
fhat = zeros(size(x));
for i= l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end
subplot(2,2,3); plot(x,fhat); title(’(c)’); axis([-3 7 0 0.4]);
xlabel(’y’); ylabel(’f(y)’;
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x=linspace(-3,7);
mix = [0.5 0.5]; mus = [0 4]; vars = [1 1]; nterm= 2;
fhat = zeros(size(x));
for i= 1l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end
subplot(2,2,4); plot(x,fhat); title(’(d)’); axis([-3 7 0 0.4]);
xlabel(’y’); ylabel(’f(y)’);

Priloha A4

Koéd v Matlabu pro vytvoreni dvouslozkové dvourozmérné smisené distribuce

mu = [2 2];

Sigma = [1 0 ;0 11;

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(xl,x2);

F = mvnpdf ([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));

mu = [0 0];

Sigma = [1 0 ;0 11;

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(xl,x2);

F2 = mvnpdf ([X1(:) X2(:)],mu,Sigma);

F2 = reshape(F2,length(x2),length(x1));

fhat = 0.5%F + 0.5%F2 ;

surf (x1,x2,fhat);
hcaxis([min(F(:))-.5*xrange(F(:)) ,max(F(:))]);
axis([-3 3 -3 3 0 .11)

xlabel(’x1’); ylabel(’x2’);
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Priloha A5

Kéd v Matlabu pro vytvofeni histogramu ¢etnosti P-gp 1. pacienta

load datalsloupec %datalsloupec obsahuje namerene hodnoty
hist (Sloupecl,100)

title(’P-gp 1. pacient’)

xlabel (’Hodnota P-gp’)

ylabel(’Pocet hodnot’)

Priloha A6

Kéd v Matlabu pro vytvoreni grafu srovnavajiciho histogram 1. pacienta a spoc¢tené

dvou a tfislozkové smiSené distribuce.

subplot(1,2,1)

load datalsloupec
[ww,xx]=ecdf (Sloupecl) ;ecdfhist (ww,xx,100) ;

hold on

x=linspace(0,1000) ;

mix = [0.6237 0.3763]; mus = [274.4845 539.6303];
[71.84706 111.252] ;nterm= 2;

vars

fhat

zeros(size(x));
for i= 1l:nterm

fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end

plot(x,fhat) ;xlabel(’y’);ylabel(’£f(y)’)

subplot(1,2,2)

load datalsloupec
[ww,xx]=ecdf (Sloupecl) ;ecdfhist (ww,xx,100) ;
hold on

x=linspace(0,1000) ;
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mix = [0.6253 0.3103 0.0644] ;mus = [273.9113 512.4047 683.3713];
vars = [71.166 93.06664 49.27677];
nterm= 3;
fhat = zeros(size(x));
for i= 1l:nterm
fhat = fhat+mix(i)*normpdf (x,mus(i),vars(i));
end

plot(x,fhat) ;xlabel(’y’);ylabel(’£f(y)’)

Priloha A7

Kéd v Matlabu pro vytvoreni histogramt ¢etnosti hodnot P-gp projektovanych

na smérové vektory

load pacientl; Ypacientl je matice dat P-gp a MRP
f1 = [1;0];

2 = [cos(pi/8);sin(pi/8)];

£3 = [1/sqrt(2);1/sqrt(2)]1;

f4 = [cos(3*pi/8);sin(3*pi/8)];

£5 = [0;1];

6 = [1/sqrt(2);-1/sqrt(2)];

hl = pacientlxfl;
h2 = pacientl1*f2;
h3 = pacient1*f3;
h4 = pacientlx*f4;
h5 = pacient1x*fb;
h6 = pacient1*f6;

subplot(2,3,1)
hist(h1,100);
title(’f1 = [cosO sin0]’);
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subplot(2,3,2)

hist(h2,100);

title(’f2 = [c0s22.5 sin22.5]°);
subplot(2,3,3)

hist (h3,100) ;

title(’£f3 = [cos45 sin45]’);
subplot(2,3,4)

hist (h4,100);

title(’f4 = [cos67.5 sin67.5]°);
subplot(2,3,5)

hist (h5,100) ;

title(’f5 = [cos90 sin90]’);
subplot(2,3,6)

hist (h6,100) ;

title(’f6 = [cos135 sin135]°);

Priloha A8

Kéd v Matlabu pro vytvoreni grafu odhadnuté smisené distribuce 1. pacienta

%1.slozka

mu = [294.19 387.34];

Sigma = [7820 7150;7150 15889]

x1 = 0:15:1005; x2 = 0:15:1005;
[X1,X2] = meshgrid(xl,x2);

F = mvnpdf ([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(xl));
%2.slozka

mu = [569.74 729.38];

Sigma = [9997 8475; 8475 17094]

x1 = 0:15:1005; x2 = 0:15:1005;
[X1,X2] = meshgrid(xl,x2);
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F2 = mvnpdf ([X1(:) X2(:)],mu,Sigma);

F2 = reshape(F2,length(x2),length(x1));
%hvysledna smisena distribuce

fhat = 0.7091%F + 0.2909%F2;

surf (x1,x2,fhat);

axis([0 1005 0 1005 O .000015])
xlabel (’P-gp’); ylabel(’MRP’);

Priloha A9

Kéd v Matlabu pro vytvotreni grafu odhadnuté distribu¢ni funkce 1. pacienta

figure

MU = [294.1928 387.3435;569.7417 729.3894];

SIGMA = cat(3,[7820 7150.9;7150.9 15889.6],[9997.4 8475.3;8475.3 17094]);
p = [0.7091 0.2909];

obj = gmdistribution(MU,SIGMA,p);

ezsurf (@(x,y)cdf (obj, [x y]),[0 1000], [0 1000])
xlabel (’PgP’); ylabel(’MRP’);

title(’Distribucni funkce 1. pacient’);

Priloha A10

Kéd v Matlabu pro vytvoreni grafu zobrazujiciho data a délici ¢aru

figure

load pacientl;
scatter(pacient1(:,1),pacient1(:,2),10,’.”)
xlabel(’PgP’); ylabel(’MRP’);

hold on;
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x = [100:0.1:700];
y=(-x+1359.39)/1.4796;
plot(x,y,’red’)

Pfiloha A11

Kéd v Matlabu pro vytvoreni grafu zobrazujicitho data, délici ¢aru a prvotni

odhady parametrii v modelu

figure

load pacient3;
scatter(pacient3(:,1),pacient3(:,2),10,’.”)
xlabel (’PgP’); ylabel(’MRP’);

hold on;

x = [250:0.1:450];

y=-3*x+1500;

plot(x,y,’red’)

mull=297.7;

mul2=300;

plot (mull,mul2,’--rs’,’MarkerEdgeColor’,’k’, ...
’MarkerFaceColor’,’k’,’MarkerSize’,10)
mu21=466.3;

mu22=520;

plot (mu21,mu22,’--rs’,’MarkerEdgeColor’,’k’, ...

’MarkerFaceColor’,’g’,’MarkerSize’,10)
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