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Uvod

Cilem této prace je vytvorit feSenou sbirku tloh specidlnich aplikaci linedrni
algebry v teoretické informatice. Na prvni pohled se muze zdat, Ze teoreticka
informatika a linedrni algebra nemaji nic spolecného, avsak opak je pravdou.
Nézornym piikladem je takovy obrazek, (pfedpoklddejme pro jednoduchost sedo-
ténovy obrazek formétu .png) ktery je vétsinou v pocitacové grafice reprezen-
tovan dvourozmérnou matici, kde kazda hodnota reprezentuje pravé jeden pixel
daného obréazku, respektive jeho barevnou slozku. V této praci nebudeme zkou-
mat vyznam linearni algebry v pocitacové grafice, ale podivame se, dle mého
nazoru, na mnohem zajimavéjsi aplikace.

Tento text je rozdélen na dva celky, konkrétnéji tedy na teoretickou cast
a fesené piiklady. V teoretické ¢asti zavedeme algebraické struktury, nad kterymi
posléze budeme definovat vektorové prostory, matice a determinanty. Déle se
v této c¢asti podivame na operaci modulo a také na mnozinu 7Z,. V zavéru teore-
tické ¢asti si udélame struény ivod do teorie grafu, teorie kodovani a kryptogra-
fie, jez maji blizky vztah k linedrni algebte. Tyto znalosti a poznatky vyuzijeme
k feseni prikladu prave z oné teorie grafi, teorie kédovani a kryptografie v nésledu-
jicim celku.

V této praci se pocita s tim, ze vazeny ¢tenar ma jistou zkusSenost s teoretickou
informatikou, a tedy predevsim s linearni algebrou. Predpoklada se napiiklad, ze
¢tenar vi, jaké ¢islo je prvocéislo, co je to zobrazeni (spec. tedy bijekce), znd po-
jem Gaussovy eliminace, umi fesit homogenni i nehomogenni soustavy linearnich
rovnic a dalsi. Tento text by mél slouzit k prohloubeni znalosti linearni algebry,

konkrétnéji tedy v oblasti teorie grafu, teorie kédovani a kryptografie.



Seznam pouzitych symbola

V této praci budeme pouzivat nasledujici symboly:

M x N
M — N
Ty
reM
MCN
||
min{z,y}
sgnx
r<y
T >y
r<y
T >y

V teoretické casti tohoto textu budeme definovat dalsi matematické symboly.

mnozina prirozenych ¢isel

mnozina celych ¢isel

mnozina polynomu s celo¢iselnymi koeficienty

mnozina prazdna

Ludolfovo éislo

pro kazdé = z mnoziny M plati vlastnost (predpis) V'

existuje alespon jedno x z mnoziny M takové, Ze pro néj

plati vlastnost (predpis) V

kartézsky souc¢in mnozin M a N
mnozina M se zobrazi na mnozinu N
prvek x se zobrazi na prvek y

prvek z lezi v mnoziné M

mnozina M je podmnozinou mnoziny N
absolutni hodnota z ¢isla x
minimalni prvek z mnoziny {z,y}
znaménko ¢isla z (funkce signum)
prvek x je ostie mensi nez y

prvek x je ostie vétsi nez y

prvek z je mensi nebo roven y

prvek z je vétsi nebo roven y
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1 Uvod do linearni algebry

1.1 Algebraické struktury

Definice 1.1.1. Je-li G neprazdnd mnozina, potom bindrni operaci na G ro-
zumime libovolné zobrazeni o : G x G — G. [1]

Definice 1.1.2. Algebraickou strukturou G rozumime nékterou neprazdnou mno-
zinu G spolu s neprazdnym systémem { f,; o € I'} n-arnich algebraickych operact
na G. (Cislo n mize byt pro riizné operace rizné.) Znacime G = (G, fo; o € I). [1]
Definice 1.1.3. Je-li ,,0“ binarni operace na mnoziné G' # (), potom algebraicka

struktura G = (G, o) se nazyva grupoid. Je-li operace ,,0¢ komutativni, tj. plati-li
Ya,be G:aob=boa,

pak se G nazyva komutativnd grupoid. [1]
Definice 1.1.4. Pologrupou rozumime libovolny grupoid G = (G, o), ve kterém

je operace ,,0“ asociativni, tj. plati-li
Va,b,c € G:ao(boc)=(aob)oc.

Komutativni pologrupa se obvykle nazyva abelovskd. [I]
Definice 1.1.5. Rekneme, ze grupoid G = (G, o) mé neutrdlni prvek, je-li prav-
divy vyrok

neGVae G :aon=a=noa.

Kazdy takovy prvek n nazyvdame neutralnim prvkem grupoidu G. [1]
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Definice 1.1.6. Necht grupoid G = (G, o) md neutralni prvek n a necht a € G.

Pak a* € G nazyvame symetrickym prvkem k prvku a, plati-li
aoa*=n=a"oa.l[l]

Definice 1.1.7. Pologrupa G = (G,0) se nazyvéa grupa, obsahuje-li neutralni
prvek a existuje-li v ni ke kazdému prvku symetricky prvek, tj. jsou-li pravdivé
vyroky

neGVaeG:aon=a=noa,

Vo e Gda* €G :a0a*=n=a"oa.

Komutativni grupa se také nazyva abelovskd. [1]

Definice 1.1.8. Okruhem nazyvame algebraickou strukturu M = (M, +,-) se
dvéma bindrnimi operacemi ,+“ a ,,-“ takovou, ze (M, +) je komutativni grupa,
(M,-) je pologrupa a operace nasobeni je zleva i zprava distributivni vzhledem

k operaci sc¢itani, tj.
Va,bce M :a-(b+c¢)=a-b+a-c,
Va,b,ce M : (a+b)-c=a-c+b-c.

Je-1i pologrupa (M, -) komutativni, pak se okruh nazyvéa komutativni. [1]
Pozndmka 1.1.1. V komutativni grupé M = (M, +) budeme neutralni prvek
znacit symbolem 0 a nazyvat jej nulovym prvkem okruhu M = (M, +,-).
Definice 1.1.9. Prvek a # o okruhu M = (M, +,-) se nazyva levy (pravy)
netrividlni deélitel nuly, existuje-li b # o, b € M takovy, ze a-b=o0(b-a = o0). [I]
Definice 1.1.10. Rekneme, 7e a # o je netrividlnim délitelem nuly, je-li a sou-
casné levym i pravym netrividlnim délitelem nuly. [I]

Definice 1.1.11. Oborem integrity budeme rozumét kazdy okruh J = (J, +, ),
ktery je komutativni, obsahuje neutralni prvek (vzhledem k ndsobeni) n # o a ve
kterém neexistuji netrividlni deélitelé nuly. [1]

Definice 1.1.12. Okruh T = (T, +, -) se nazyva téleso, jestlize T obsahuje ale-
spon dva navzajem ruzné prvky a je-li (T'\ {o}, -) grupou. Je-li (T, -) komutativni,

pak se T nazyvéa komutativni téleso. [1]
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1.2 Vektorové prostory

Definice 1.2.1. Jsou-li A a B neprazdné mnoziny, potom levou vnéjsi operaci
nad mnozinami A a B (v tomto poradi) rozumime kazdé zobrazeni o : AxB — B.
(Jsou-li a € A, b € B, pak prvek o(a,b) budeme oznacovat a o b). [1]

Definice 1.2.2. Necht (V, +) je komutativni grupa (jeji prvky budeme oznacovat
napt. U, v, nulovy prvek ©), T &iselné téleso, o : T x V — V levd vnéjsi ope-
race nad 7" a V. Potom systém V = (V,+, T, o) nazveme vektorovy prostor nad
telesem T, plati-li:

1.Vee T, U, v eV :ico(d+7T
2.Ve,deT,u eV :(c+doUd=cotu +do,
3.Vee T, ¥ e€V:(c-dod =co(do),
4.VU eV :loUW = 1.

— —
)=cou +co,

Prvky z komutativni grupy (V, +) vektorového prostoru nazyvame vektory a cisla
z télesa T skaldry. Vektorovy prostor se nékdy také nazyva linedrni prostor. [1]
Poznamka 1.2.1. Operace ,,+“ v predchozi definici bude symbolizovat sc¢itani
v grupé (V,+) a také scitéani ¢isel v télese 7. Leva vnéjsi operace ,,0“ bude

symbolizovat nasobeni vektoru skalarem. Misto symbolu ,,0“ budeme pouzivat

symbol -“. [I]
Definice 1.2.3. Je-li V vektorovy prostor nad ciselnym télesem T a jsou-li
T, uy,...,u; € V, pak fekneme, ze vektor U je linedrni kombinaci vektori
ui, ..., up, existuji-li &fsla cq, ..., ¢, € T takova, Ze plati
k
T=> ¢
i=1

Poznamka 1.2.2. Jsou-li vSechny koeficienty ¢;, kde : = 1,2... k v predchozi
definici nulové, je linearni kombinace oznacovana jako trividlni. Je-li alespon je-
den z koeficientu ¢; # 0, pak fikdme Ze linedrni kombinace je netrividlni.

Definice 1.2.4. Vektory uy, . .., uy z vektorového prostoru V se nazyvaji linedrné
zavislé, existuje-li alespon jedna jejich netrivialni kombinace, kterd je rovna nu-
lovému vektoru ¢ (nazyvdme tzv. nulovd kombinace). V opatném piipadé se
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vektory uy, ..., uz nazyvaji linedrné nezdvislé. [1]

Véta 1.2.1. Jsou-li uy,...,u;, vektory z vektorového prostoru V, pak jsou tyto
vektory linearné zavislé pravé tehdy, je-li alespon jeden z téchto vektoru linearni
kombinaci ostatnich vektoru. [IJ

Definice 1.2.5. Rekneme, ze vektorovy prostor W = (W, @, T,®) je podprosto-
rem vektorového prostoru V = (V,+, T, ), plati-li:

1.WCVv,

2NU, TEW WPV =1+
3VeeT, ueW:c@ud=c-u.[]]

Pozndmka 1.2.3. Vektorovy podprostor se nékdy také nazyva linedrni pod-

>
v

prostor. Dle predchozi definice linearni podprostor zachovava operace, neboli ji-
nak feceno, linedarni podprostor je uzavieny na scitani v grupé (V,+) a také na
nasobeni vektoru skaldrem.

Definice 1.2.6. Je-li M podmnozina vektorového prostoru V, pak linedrnim
obalem mnoziny M ve V rozumime prunik vSech podprostoru prostoru V obsa-
hujicich mnozinu M. Linedrni obal mnoziny M budeme znacit symbolem [M]. [1]
Definice 1.2.7. Necht V je vektorovy prostor nad ¢iselnym télesem 7. Plati-li
pro podmnozinu M # () prostoru V, ze [M] = V, pak M se nazyvd mnoZina
generdtori prostoru V. Rikdme také, ze mnozina M generuje prostor V. [I]
Definice 1.2.8. Rekneme, ze vektorovy prostor V je koneéné dimenze, jestlize
existuje alespon jedna jeho koneénd mnozina generatoru. [1]

Definice 1.2.9. Badzi vektorového prostoru V koneéné dimenze rozumime libo-
volnou linedrné nezéavislou mnozinu {uy, ..., uz} jeho generatort. [I]

Véta (Steinitzova) 1.2.2. Necht {u7,...,u,} je mnozina generatoru vekto-
rového prostoru V # {0} a 07,...,0; jsou linedrné nezavislé vektory z V. Po-
tom plati, Ze k < n a Ze po vhodném oéislovani vektori uy,...,u, je mnoZina
{v1,..., 0%, Ups1,-- -, Uy} mnozinou generdtort prostoru V. [I]

Véta 1.2.8. Je-li V # {0} vektorovy prostor koneéné dimenze, potom kazdé

dvé jeho baze maji stejny pocet prvku. [1]
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Definice 1.2.10. Je-1i V # {0} vektorovy prostor koneéné dimenze, pak pocet
prvku jeho libovolné baze nazyvame dimenze prostoru V a znacime dim). Je-li

VY = {7}, pak dimV = 0. [1]

1.3 Operace modulo

Definice 1.3.1. Rekneme, 7Ze celé ¢islo a déli celé éislo b (tento fakt znacime
a|b), pokud existuje celé ¢islo n takové, ze b =n - a. [3]

Pozndmka 1.3.1. Jestlize ¢islo a déli ¢islo b (v oboru celych éisel), pak ¢islo
a nazyvame délitelem cisla b. [3]

Definice 1.3.2. Prvociselnym rozkladem kladného celého ¢isla oznac¢ujeme zapis

Pty
kde r > 1 je celé cislo, p1 < ps < ... < p, jsou navzajem ruznd prvocisla
a ni,na,...,n, jsou kladnd celd ¢isla. [3]

Véta 1.3.1. Pro kazdé celé ¢islo x > 2 existuje az na poradi ¢initelu a asocio-
vanost jednozna¢né prvociselny rozklad. [3]

Definice 1.3.3. Rekneme, ze kladné celé éislo d je nejvétsim spolecngm délitelem
kladnych celych ¢isel a, b (znac¢ime d = N.SD(a, b)), pokud jsou splnény nésledujici
dvé podminky:

1. Cislo d je spoleénym délitelem ¢isel a, b, tj. plati d |a a zéroven d|b (v oboru
kladnych celych ¢isel).

2. Cislo d je nejvétsim ze véech spoleénych délitelt éisel a, b, tj. plati nésledujict:
je-li ¢ takové kladné celé ¢islo, pro které plati ¢|a a zéroven c| b, potom c|d. [3]
Véta 1.3.2. Necht a,b jsou libovolna celd ¢isla, b # 0. Pak existuji jednoznacné
urcena cela cisla g a r takova, ze jsou splnény nasledujici dvé podminky:

1. Plati rovnost a = q- b+ r.

2. Cislo r spliiuje nerovnost 0 < r < [b|. [3]

Definice 1.3.4. Jednoznacné urcené ¢islo r z predchozi véty se nazyva zbytek

po délent ¢isla a ¢islem b a toto ¢islo znacime amodb. [3]
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Definice 1.3.5. Nechf n € N. Rekneme, 7e &sla a,b € Z jsou kongruentni mo-
dulo n, jestlize n | (a — b). Tuto skutecnost znacime a = b (modn). [4]
Pozndamka 1.3.2.V predchozi definici relace byt kongruentni modulo* znaci, ze
¢isla a, b maji stejné zbytky po déleni modulem n. Tento fakt zachycuje nasledujici
véta. [4]

Véta 1.8.8. Necht n € N. Pro &isla a,b € Z jsou nésledujici podminky ekviva-
lentni:

1. a =b(modn),

2. existuje k € Z takové, ze a = b+ k - n,

3. amodn = bmodn, tj. jsou si rovny zbytky po déleni ¢islem n. [4]

Véta 1.8.4. Necht n € N. Pak plati:

1. Pro kazdé ¢ € Z je ¢ = ¢ (modn),

2. Necht a € Z. Potom plati, Ze a = 0 (modn) pravé tehdy, kdyz n déli a. [4]
Definice 1.3.6. Necht n € N. Symbolem Z,, zna¢ime mnozinu Z, = {0,1,...,

n — 1}. Pro v8echna a, b € Z,, definujeme operace

a®b=(a+b)modn,

a®b=(a-b)modn.[]
Pozndmka 1.3.3. Takto zavedenou mnozinu nékdy také nazyvame mnozZinou
zbytkovijch trid. V celém tomto textu (pokud nebude feceno jinak) budeme pra-
covat s mnozinou Z,, kde p je prvocislo, ¢imz se vyhneme jistym problémum,
nebot mnozina Z, je télesem. Symbolem Z’; budeme rozumét mnozinu vsech

usporddanych k-tic nad Z,. [4]

1.4 Matice a jejich zakladni vlastnosti

Definice 1.4.1. Necht T = (T, +,-) je ciselné téleso, m,n € N,a;; € T,i =

1,2,....,m, 5 =1,2,...n. Potom schéma
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aix aiz2 - Qip
Q21 Qg2 - A2p

A:

Am1 Am2 *** Amn

se nazyva matice typu mxn nad T . Tuto matici A budeme zapisovat ve zkraceném
tvaru A = (a;;) typu m x n. Je-li r = min{m,n}, pak fekneme, ze prvky
a11, A2, - - - , Ay tVOFT hlavnd diagondlu matice A. [1]

Poznamka 1.4.1. Pokud matice bude typu n x n nad 7, budeme hovorit o tzv.
ctvercové matici radu n. Predchozi definice zavadi matice nad ¢iselnym télesem.
V tomto textu se objevi i matice, které misto ¢isel budou mit znaky a symboly.
S takovymi maticemi nebudeme délat zadné operace.

Definice 1.4.2. Matici O = (0;;) typu m x n nazyvame nulovou matict, plati-li
0oijj=0prokazdé i =1,2,....m, j=1,2,...n. [

Definice 1.4.3. Ctvercovou matici £ = (i) Tadu n nazyvame jednotkovou ma-
tict, jestlize vSechny prvky na jeji hlavni diagonale jsou rovny 1 a vSechny prvky
mimo hlavni diagonalu jsou rovny 0.

Definice 1.4.4. Je-li A = (a;;) matice typu m X n, potom matici transpono-
vanou k matici A nazyvame matici AT = (a;;) typu n X m, kterd vznikne z A
vzajemnou zameénou radku a sloupcu. [I]

Definice 1.4.5. Necht A = (a;;) je ¢tvercovd matice radu n. Symetrickou matici
k matici A rozumime kazdou matici, ktera spliuje rovnost A = AT, [I]
Definice 1.4.6. Necht A = (a;;), B = (b;;) jsou matice typu m x n nad T.
Potom souctem matic A a B rozumime matici A+ B = (¢;;) typu m x n nad T
takovou, ze ¢;; = a;; + b;; prokazdé i =1,2,....m, j=1,2,...,n. [

Definice 1.4.7. Necht A = (a;;) je matice typu m x n nad 7 a necht ¢ € T.
Potom soucinem skaldru c a matice A rozumime matici ¢- A = (c-a;;) typu m xn
nad 7. [1]

Definice 1.4.8. Necht A = (a;;) je matice typu m x n nad T, B = (bj) je ma-
tice typu n X p nad 7. Potom soucinem matic A a B (v tomto poradi) rozumime

matici A+ B = (¢i) typu m x p nad T takovou, ze
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n

Cik = Zaij “bjk,

j=1
pro kazdé i =1,2,....m, k=1,2,... p. [I]
Definice 1.4.9. Elementdarnimi radkoviymi transformacemi matice A nazyvame
nasledujici operace:
1. vyména libovolnych dvou fadku v A,
2. vynasobeni nékterého tadku v A prvkem z 7T ruznym od nuly,
3. pficteni libovolného nasobku nékterého fadku z A k jinému rfddku v A. [I]
Definice 1.4.10. Jsou-li A, B matice typu m x n nad 7T, pak fekneme, ze ma-
tice B je rddkové ekvivalentni s matici A (znaé¢ime A ~ B), muze-li B vzniknout
z A pomoci konecného poctu elementarnich réddkovych transformaci. [1]
Definice 1.4.11. Hodnosti matice A = (a;;) typu m X n nad T rozumime ¢islo
h(A), které je rovno maximalnimu poctu linedrné nezavislych radka matice A. [I]
Véta 1.4.1. Rédkové ekvivalentni matice maji stejnou hodnost. [I]
Definice 1.4.12. Ctvercovou matici A = (a;;) fadu n nazveme reguldrn, jestlize
je jeji hodnost h(A) = n. V opactném piipadé nazveme matici A singuldrni.
Definice 1.4.13. Pro kazdé n € N budeme (7ddkovym) n-rozmérngm aritme-
tickym vektorovym prostorem nad T (znaéime T™) rozumét komutativni grupu
(Mi%n(T),+) vSech matic typu 1 x n nad 7 uvazovanou spolu s ndsobenim ma-
tic z Myx,(T) skaldry z T. Kazdou matici z My, (7T) pak nazveme n-rozmérnyj
(radkovy) aritmeticky vektor nad T . [1]
Definice 1.4.14. Je-li @ = (uy,...,u,) n-rozmérny aritmeticky vektorovy vek-
tor, pak prvky wy, ..., u, € T nazyvdme souradnice vektoru . [1]
Pozndmka 1.4.2. V tomto textu budeme uvazovat rddkové vektory, tj. vektory,
které maji soutadnice zapsany v fadku. Vektory, které budou mit soutadnice
zapsany ve sloupci, budeme nazyvat vektory sloupcové. Transponovany vektor

k radkovému vektoru je vektor sloupcovy a naopak.
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1.5 Poradi, permutace, determinant

Definice 1.5.1. Je-li A = {ay,ay,...,a,}, kde n > 1, konetnd mnozina, potom

poradim mnoziny A nazveme libovolnou posloupnost
= (ak1>ak27 s 7akn>

prvku z A takovou, ze kazdy prvek z mnoziny A se v 7 vyskytuje pravé jednou. [1]
Definice 1.5.2. Permutaci P na mnoziné A rozumime kazdou bijekci A na A.

Je-li P permutace na A, pak ji budeme psat ve tvaru schématu

P= (e ploy i)
Definice 1.5.3. Je-li m = (ky, ko, ..., k,) pofadi, pak fekneme, ze prvky k; a k;
tvoii v pofadi 7 inverzi, plati-li ¢ < j a k; > k;. [1]
Pozndmka 1.5.1. Pocet inverzi poradi m budeme v tomto textu oznacovat
symbolem [r]. [1]
Definice 1.5.4. Znaménkem poradi © rozumime &islo sgnm = (—1). [I]

Definice 1.5.5. Znaménkem permutace

. il ’ig Zn [T
P= (k)l k’g kn) o <7T2>
rozumime ¢islo sgn P, které se rovna +1, plati-li sgn m = sgn my, a rovna se —1,
plati li sgnm = —sgnmy. [1]
Definice 1.5.6. Necht A = (a;;) je Ctvercovd matice fédu n nad ¢fselnym

télesem 7. Determinantem matice A rozumime ¢islo detA z télesa T takové, ze

detA = Z sgnP - ayg, - Qoky - - - -+ Ak,
3

kde sc¢itdme ptes vSechny permutace

P= (kll ,32 kZ) = (ph) P?z) P?n))
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mnoziny {1,2,...,n}. Kazdy ze sou¢inu ayx, - agg, - - .. - ank, Nazyvame clen de-
terminantu detA. [1]

Véta 1.5.1. Ma-li ¢tvercova matice A fddu n nad T v nékterém fadku samé
nuly, pak detA = 0. [I]

Véta 1.5.2. Ma-li ¢tvercova matice A fadu n nad 7 vSechny prvky pod hlavni
diagonélou rovny nule, potom detA je roven sou¢inu ajq, ass,. .., Gy, prvku na
hlavni diagonéle. [I]

Definice 1.5.7. Necht A = (a;;) je matice typu mxn nad 7. Potom kazdou ma-
tici, ktera vznikne z matice A vynechanim nékterych radku a nékterych sloupcu,
nazyvame submatice matice A. Je-li submatice matice A ¢tvercova, potom jeji
determinant nazyvame subdeterminant matice A. [1]

Definice 1.5.8. Je-li A = (a;;) ¢tvercova matice fadu n nad 7, potom subde-
terminant submatice A;; faddu (n — 1) vzniklé vynechanim i-tého fadku a j-tého
sloupce A nazyvame minor matice A piislusny k prvku a;; a znacime jej M;;.
Algebraickym dopliikem prvku a;; rozumime prvek A;; = (—1)" - M,;. [1]
Véta (Laplaceova) 1.5.3. Necht A = (ay,) je ¢tvercovd matice fddu n nad T
Potom pro kazdé : = 1,2,...,n plati

Z Qi * Azk = detA,
k=1

a pro kazdé i, =1,2,...,n, i # j plati

n

> ay - Ay = 0.[1]

k=1
Definice 1.5.9. Necht A = (a;;) je matice fddu n nad T . Inverzni matici k ma-
tici A, budeme rozumét matici A=, pro kterou plati A- A7! = E = A~ . A
Matice A, ke které existuje inverzni matice A~!, se nazyva invertibilni.
Véta 1.5.4. Je-li A = (a;;) ¢tvercova matice fadu n nad 7T, potom k ni existuje
inverznf matice A~! tehdy a jen tehdy, jeli detA # 0. [1]
Pozndmka 1.5.2. Inverzni matici A~! nalezneme tak, Ze vytvoifme matici

(A|E), kterou se snazime elementdrnimi radkovymi transformacemi dostat do
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tvaru (E| A~1). Tento postup plati pro vsechny matice, které spliiuji kritérium

predchozi véty, tedy pro vSechny regularni matice.

1.6 Linearni algebra nad mnozinou 7,

Pozndmka 1.6.1. Pojmy z linedrni algebry, které byly zavedeny v predchozich
kapitolach, jako napt. vektory, matice, determinanty a dalsi, se daji analogicky
jako pro redlna cisla zavést i pro mnozinu Z,,. S¢itani a nasobeni na této mnoziné
jsme si definovali v kapitole 1.3. Rozdil mezi Z a Z,, nastava v ptipadé, kdy chceme
nalézt inverzni matici A~'. Tuto skute¢nost zachycuje nésledujici véta. [4]

Véta 1.6.1. Ke ¢tvercové matici A nad Z, existuje inverzni matice A~! prave

tehdy, kdyz determinant matice A je invertibilni prvek Z,,. Pak
A7l = (detA)_l . (.Aij)T,

kde (A;;) je matice algebraickych dopliiki matice A. [4]

Definice 1.6.1. Necht A = (a;;), B = (b;;) jsou matice typu m x n nad T
a nechf n € N. Rekneme, ze matice A a B jsou kongruentni modulo n, jestlize
pro kazdy prvek a;; matice A a kazdy prvek b;; matice B plati n | (a;; — b;;) pro
viechna i = 1,2,...,m, 7 =1,2,...n. Tento fakt zna¢ime A =, B. [4]
Pozndmka 1.6.2. Problém v Z, nastdva, pokud chceme nalézt hodnost h(A)
matice A. D4 se dokazat, Ze v Z, neplati rovnost h(AT) = h(A). Tomuto problému
se v tomto textu vyhneme tak, Ze budeme pracovat nad mnozinou Z,, kde p je
prvocislo (pokud nebude feceno jinak), jak jiz bylo zminéno v kapitole 1.3. Tato
mnozina je télesem, diky ¢emuz se vyhneme jistym nepiijemnostem pii hledani
hodnosti h(A) matice A. Dale bude mozné diky tomuto télesu hledat inverzni
matici prevodem popsanym na konci kapitoly 1.5. [4]

Pozndmka 1.6.3. Dalsi nepiijemnosti v Z, muze byt Gaussova eliminacni me-
toda. Tato metoda v Z, prestava byt spolehlivym nastrojem pro vypocet deter-
minantu ¢i feSeni soustav linedrnich rovnic. Vzhledem k faktu, ze v tomto textu
jsme Gaussovu eliminaéni metodu ani soustavy linearnich rovnic nezavadéli, neni

nutné tuto skutecnost resit, ale je dobré ji alespon zminit. [4]
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2 Teorie gratu

2.1 Strucny uvod do teorie grafi

Teorie grafi nam dava v matematice a informatice velmi uzitec¢nou a prak-
tickou pomucku k feseni nejruznéjsich druhu problému. Graf je pomérné obecny
pojem a vyskytuje se v ruznych vyznamech. Zde bude tento pojem predstavovat
graficky zpusob vyjadieni vztaht mezi néjakymi objekty. Objekty budou v grafu
reprezentovany vrcholy. Vztahy budou v grafu reprezentovany hranami.
Definice 2.1.1. Jednoduchy graf G je usporddand dvojice (V(G), E(G)), kde
V(@) je neprazdna mnozina vrcholu a F(G) je néjakd mnozina dvouprvkovych
podmnozin mnoziny V(G). Prvkum E(G) tikdme hrany. [5]

Pozndmka 2.1.1. Pokud z kontextu bude zfejmé, o ktery graf se jedna, budeme
pro mnozinu vrcholl pouzivat symbol V' a pro mnozinu hran symbol E. Symbolem
|V (G)| budeme rozumét pocet vrcholi a symbolem |F(G)| pocet hran grafu G.
Vrcholy budeme znacit symbolem v; a hrany symbolem e;, pficemz e; = {v;,v;}.
V tomto textu budeme pracovat vyhradné s konecnymi grafy. Vrcholy v; a v;
nazyvame koncové vrcholy hrany e;. Je-1i vrchol v; koncovym vrcholem hrany e;,
fikame, ze vrchol v; je incidentni s hranou e;. Nasobnou hranou budeme rozumeét
vice hran spojujicich stejné vrcholy. [5]

Pozndmka 2.1.2. Takto zavedena definice jednoduchého grafu nedovoluje, aby
oba koncové vrcholy hrany byly stejné, protoze by se nejednalo o dvouprvkovou
podmnozinu mnoziny V(G). Takovym hrandm se iika smycky. V celém tomto
textu budeme predpokladat, ze graf G neobsahuje smycky. Déle si z definice
muzeme vsSimnout, ze graf G nemuze byt prazdny. Graf G s mnozinou vrcholu

V(G) ={vy,...,v,}, pro n > 3 a mnozinou hran E(G) = {{vy, v}, {ve,v3},. ..,
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{vn_1,0n},{vn,v1}} se nazyva cyklus (nékdy také kruznice). [5]

Definice 2.1.2. Stupen vrcholu v; je pocet hran, se kterymi je vrchol v; inci-
dentni. Stupen vrcholu budeme znacit symbolem deg(v;). [5]

Definice 2.1.3. Orientovanym grafem rozumime usporadanou dvojici G = (V,
E), kde V(G) je mnozina vrcholu a E(G) C V(G) x V(G) je mnozina oriento-
vanych hran. [5]

Poznamka 2.1.3. Kazdy graf G, na kterém neni zavedena orientace se nazyva
neorientovany graf G. Orientace je zde chapand jako smeér hrany e; od vrcholu v;
do vrcholu v;.

Definice 2.1.4. Rekneme, 7ze graf G je ohodnoceng, jestlize jsou hrandm nebo
vrcholum piitazena nenulova ¢isla. [5]

Definice 2.1.5. Méjme déan graf G = (V, E). Rekneme, ze graf H = (V' E') je
podgrafem grafu G, jestlize V! C V a soucasné £’ C E. [5]

Pozndmka 2.1.4. Specialnim piipadem podgrafu je podgraf, ktery obsahuje
viechny vrcholy ptuvodniho grafu (tj. V' = V). Takovému podgrafu iikame faktor. [5]
Definice 2.1.6. Sled v grafu G je takova posloupnost vrcholi a hran

(Vo, {vo, v1}, 01, {v1, va}, va, . oo, {Un—1, U}, UR),

ze hrana e; = {v;_1, v;} mé koncové vrcholy v;_1 a v; pro véechnai =1,2,... n. [5]
Pozndmka 2.1.5. Sled uvedeny v predchozi definici nazyvame (v,, v, )-sled. [5]
Definice 2.1.7. Graf je souvisly, jestlize pro kazdou dvojici vrcholi v;, v; € V(G)
existuje (v;, v;)-sled. [5]

Definice 2.1.8. Graf se nazyva acyklicky, jestlize zadny jeho podgraf neni cyklus.
Souvisly acyklicky graf se nazyva strom. [5]

Definice 2.1.9. Faktor grafu, ktery je stromem, se nazyva kostrou grafu. [5]
Definice 2.1.10. Necht G je souvisly graf spolu s ohodnocenim hran c, tj. pro
kazdou hranu e; € E(G) je dano ¢islo ¢(e;) (¢islo c(e;) nazyvame cenou hrany e;).
Minimdlni kostra grafu G = (V,E) je takova kostra grafu K = (V,E'), ze
> e.crr €(€i) je nejmensi moznd (mezi vSemi kostrami grafu ). [§]

Definice 2.1.11. Matice incidence I(G) = (g;;) orientovaného grafu G = (V, E),
kde |V(G)| =m a |E(G)| = n je matice typu m x n definovana vztahem
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+1 pokud hrana e; vychazi z vrcholu v;,
gi; = § —1 pokud hrana e; vchazi do vrcholu v;,
0 jinak. [6]
Definice 2.1.12. Matice sousednosti S(G) = (s;;) orientovaného grafu G =

(V. E), kde |V(G)| = n je ¢tvercova matice fadu n definovédna vztahem

o 1 jestlize ¢; € E(G)
Y10 jinak.

Pro neorientovany graf plati, ze matice sousednosti S(G) je symetricka. [6]
Definice 2.1.13. Laplaceova matice sousednosti L(G) = (l;;) neorientovaného
grafu G = (V| E) s mnozinou vrcholu V(G) = {vy,vs,...,v,}, kde G je bez

smycek a nasobnych hran je ¢tvercova matice fadu n definovana vztahem

deg(v;) pokud i = j,
li; = -1 pokud {v;,v,;} € E(G),
0 jinak. [6]

Definice 2.1.14. Pocet koster neorientovaného grafu G = (V, E) je roven de-
terminantu matice L'(G), kterd vznikne vypusténim posledniho fadku a sloupce

z matice L(G). [0]

2.2 Grafové algoritmy

Kruskaliv algoritmus

Kruskaluv algoritmus je jeden z algoritmu vyuzivanych k nalezeni minimalni
kostry grafu.

Definice 2.2.1. Méjme dan souvisly ohodnoceny graf G s nezdpornym ohodno-
cenim hran c. Pocet hran grafu G oznac¢ime m.

1. Setadime hrany grafu G' do neklesajici posloupnosti podle jejich ohodnoceni:

cler) < cleg) < ..

< c(em).
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2. Zacneme s prazdnou mnozinou hran E(G) = () pro kostru.

3. Proi=1,2,...,m vezmeme hranu e; a pokud priddnim této hrany nevznikne
cyklus (v grafu s mnozinou hran E(G) U {e;}), tak priddme hranu e; do E(G).
Jinak hranu e; ,zahodime“.

4. Pro zpracovani vSech hran obsahuje F(G) hrany minimalni kostry ohodno-
ceného grafu G. [5]

Pozndmka 2.2.1. Jednotlivé kroky Kruskalova algoritmu budeme znacit sym-
bolem ~.

Floyduv—Warshalliv algoritmus

Floyduv—Warshalluv algoritmus slouzi predevsim k vyhledani vzdalenosti (vzda-
lenost = délka minimdln{ cesty) v ohodnocenych grafech. Algoritmus je zaloZen na
porovnani hodnot piimych a nepiimych vzdalenosti. Vyuzivéa se toho, ze hrana
{vi,v;} patif do miniméln{ cesty tehdy, pokud nevede minimalni cesta jinudy.

Zapsano matematicky:

c({vi,v5}) > c({vi, ve}) + c({vr, v;}). 12

Ukazano schématicky:

)

Obrézek 1: Schéma Floydova-Warshallova algoritmu

Definice 2.2.2. Méjme dan souvisly ohodnoceny graf G s nezdpornym ohodno-
cenim hran c. Pocet hran grafu G' oznacime m.
1. Sestavime matici pifmych vzdalenosti F', pficemz pro prvky f;; této matice
plati:

a) fi; = 0 pokud i = j,

b) fij = c(e;) pro i =1,2,...,m pokud ¢ # j a hrana spojujici vrcholy v;, v;

existuje,
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¢) fij = oo pokud ¢ # j a hrana spojujici vrcholy v;, v; neexistuje.
2. Zavedeme pomocnou proménnou k a polozime k = 1. Tato proménna piedsta-
vuje index vrcholu, ptes ktery provadime pfepocet.
3. Provedeme prepocet jednotlivych prvka f;; matice F' podle pravidla f;; =
man{ fi;, fit + fr;}, pfiCemz nepfepocitavame prvky matice, pro které plati i = j
(hlavni diagondla matice), prvky, pro které plati ¢, j = k (lezi v fadku ¢i sloupci
s indexem k), a prvky i # k a j # k, pro které f;, = 0o a fi; = oo.
4. Pokud k < n (n je pocet vrcholu grafu GG), potom polozime k = k+1 a vracime
se zpét ke kroku 3. Je-li £ = n je vypocet ukoncen a posledni ziskand matice je
hledanou matici vzdélenosti. [2]
Pozndmka 2.2.2. Jednotlivé kroky Floydova-Warshallova algoritmu budeme
znacit symbolem ~-.

Algoritmus prohleddvdni do Sitky

Obcas tento algoritmus muzeme zahlédnout pod anglickym nazvem ,Breadth-
first search” (zkracené BFS). Algoritmus prohledavéni do sitky je grafovy algo-
ritmus, ktery postupné prochézi vSechny vrcholy v daném maximalnim souvislém
podgrafu. Tento algoritmus postupuje systematickym prohleddvanim grafu ptes
vSechny vrcholy. Nepouziva pti svém prohledavéani zadnou heuristickou analyzu.
Pouze prochézi vsechny vrcholy a pro kazdy vrchol projde jejich vSechny nasledov-
niky. Pritom si poznamenava predchudce jednotlivych vrcholu a tim je poté vy-
tvofen strom nejkratsich cest k jednotlivym vrcholum z kofene (vrchol, ve kterém

jsme zacinali). [11]
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3 Teorie kodovani

3.1 Struc¢ny tvod do teorie kédovani

Teorie kodovdni se zabyva nejen konstrukcemi kodu, ale i studiem jejich
vlastnosti. Ulohou teorie kédovani je tvorba postupu a metod, které nam zajisti
bezpeény prenos zprav komunikac¢nim systémem. Teorie kédovani se déli na mi-
nimalni kédovani (komprese dat), na bezpeénostni kédovéni (samoopravné kédy)
a na kryptografické kédovani (kryptografie). V tomto textu se nebudeme vénovat
kompresi dat, ale zaméfime se na samoopravné kédy a kryptografii (v dalsi kapi-
tole). Nyni si pfipomenme mnozinu zbytkovych tiid Zs.

Definice 3.1.1. T¢leso Zs je dvouprvkova mnozina {0, 1}, na které je definovano

séitani + : Zg X Zig — Zo a nasobeni - : Zg X Zg — 7o takto:

~ |+
S S
_~ S|~

0 1 .
0 1 0
1 0 1

Tedy 0+0=0,0+1=1+0=1,14+1=0,0-0=0-1=1-0=0,1-1=1.[7]
Definice 8.1.2. Necht A je koneénd mnozina (tzv. abeceda). Pak slovo je li-
bovolnd koneénd posloupnost prvku z A. Kédovdni v obecném smyslu zahrnuje
algoritmus, kterym informace prevadime do posloupnosti slov (tzv. kodér) a algo-
ritmus, kterym zpétné z téchto slov ziskavame puvodni informaci (tzv. dekodér).
Slova, ktera vytvaii kodér, se nazyvaji kodovd slova. Mnozina vSech koédovych
slov se nazyva kdd. Je-li kéd mnozinou slov stejné délky (kazdé kédové slovo ma
stejny pocet znaku abecedy), mluvime o tzv. blokovém kddu. Blokovy kéd délky n
znadi, ze vSechna kdédova slova maji n znaku abecedy. [7]

Pozndamka 3.1.1. Algoritmus je presny postup, kterym se fesi dany typ tlohy.
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Definice 3.1.3. Rekneme, 7e kéd K je bindrnd, jestlize viechna jeho slova jsou
zapsana ve dvojkové soustavé (tj. vSechna slova patif do Z%). [§]

Definice 3.1.4. Binarni blokovy kéd K délky n je linedarni, pokud koéd K tvori
linearni podprostor linearniho prostoru Z73. Jestlize dimenzi tohoto podprostoru
oznac¢ime k, pak mluvime o linedrnim (n, k) kédu. [7]

Definice 8.1.5. Pro vektory (slova) ¥ = (vovy...v,_1), W = (wowy ... wy_1)
nad Z} definujeme operaci s¢itani nasledovné: TH+W = (votwe v1+wy ... Vy_q
+ wy,_1) mod 2 a operaci ndsobend skaldrem ¢ € T nésledovné: ¢- ¥ = (¢ - vy

C v ... C-Uy_1) mod 2.

Pozndmka 3.1.2. Pro vektor (slovo) U = (vovy . .. v,_1) nad Z% plati nasledujici
rovhosti: 1 - 0 =7,0- U =0,0-U=0a0v =—0.

Definice 3.1.6. Opakovaci kod K délky n je kéd slozeny ze vsech slov tvaru
T = (vovy ... v, 1), kde v; = 1 nebo v; = 0 pro vsechna i = 0,1,...,(n —1). [§]
Definice 3.1.7. Generujici matice G linedrniho (n, k) kédu K je po tadcich
zapsand baze tohoto kédu. Kontrolni matice linedrniho (n, k) kédu K je takova
matice H s linedrné nezavislymi radky, pro kterou plati: mnozina feSeni homo-
genn{ soustavy H - (Z)T = 7 je rovna kédu K. [7]

Definice 3.1.8. Je-li pocet prvku nékteré baze kodu K roven k, pak rikame, ze
kéd K mé k informacnich biti a (n — k) kontrolnich biti. [§]

Véta 3.1.1. Necht G je generujici matice a H kontrolni matice linedrniho (n, k)
kédu. Pak H - GT = Oy a také G - HT = Oy, kde O; je nulovd matice s (n — k)
fddky a k sloupci a plati Oy = OT. [7]

Pozndmka 3.1.3. Matice G je casto ve tvaru G = (E'|C), kde F je jednotkova
matice fddu n. Matice H je pak casto ve tvaru H = (C7 | E), kde E je jednotkova
matice fddu (k — n). Navic plati, ze matice H je odvozena z matice G. [T]
Definice 3.1.9. Kéd K nazveme systematicky, pravé kdyz existuje generujici
matice G linedrniho (n, k) kédu, kterd je ve tvaru G = (E | C), kde E je jednot-

kova matice fadu n. [7]
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3.2 Cyklické kédy

Definice 3.2.1. Cyklicky (n,k) kéd K délky n nad ZY je linedrni (n, k) kéd,
ktery je uzavieny na cyklicky posun pismen (prvkiu z abecedy). Pro kazdé ¥ € Z4
plati: Je-li ¥ = (vovy ... v,_1) € K, pak ¢(V) = (v1...v,_119) € K. [§]

Véta 3.2.1. Opakovaci kéd délky n nad Zj je cyklicky. [§]

Pozndmka 3.2.1. Cyklicky (n, k) kéd je uzavieny na cyklické posuny pismen
doleva i doprava, nebot posun o i mist doleva je vlastné posunem o (n — i) mist
doprava, pro 0 < i < (n —1). [§

Pozndamka 3.2.2. Pro popis cyklickych posunu slov se ukazuje vyhodné praco-

vat s n-ticemi znaku jako s polynomy. Proto zavadime zobrazeni
U= (vov1 ... 0p-1) = v(z) =vg+ (V1) + ..+ (Vpeg - 2.

Cyklicky posun je pak realizovan vyndsobenim polynomu v(z) s proménnou z

s tim, ze 2" = 1 (nebot pracujeme nad Z), piicemz x # 0. Tedy
r-v(@)=(vo-x)+ (v1-2¥) + ...+ (Vpo 2" ) + (V1 - 2V)
=vp 1+ (o -x)+ (v 2H) + ...+ (Vo 2" [§]

Definice 3.2.2. Kazdy cyklicky (n, k) kéd K obsahujici vice nez jedno slovo
obsahuje pravé jeden (az na nenulovy ndsobek) polynom g(z) stupné (n — k).
Polynom g(x) se nazyvé generugjici polynom kédu K a ma nasledujici vlastnosti:
1. Kéd K se sklada pravée ze vsech nasobku polynomu g(z).

2. Polynomy g(z),x - g(x),2? - g(x),..., 2% 1. g(x) tvoif bazi kédu K.

3. Polynom g(x) déli polynom z"™ — 1 beze zbytku v okruhu Z,[z]. [§]
Pozndmka 3.2.3. Kazdy cyklicky (n, k) kéd K je jednoznaéné urcen svym ge-
nerujicim polynomem. [§]

Pozndmka 3.2.4. Generujici polynom cyklického (n,k) kédu K je polynom
nejmenstho stupné mezi vemi nenulovymi polynomy cyklického (n, k) kédu K. [§]
Definice 3.2.3. Necht je dan generujici polynom g(x) cyklického (n, k) kédu K.

Pak kodovdni generované polynomem probiha takto: mame-li dany informacni bity
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(vov1 . .. v_1). Vytvoifme polynom v(z) = v + (vy - ) + ... + (vp_1 - 2"71). Pak

v(z) = v(x) - g(x).

Jestlize polynom v(x)-g(x) je roven ug+ (ug-x)+...4 (uy,—1-2" 1), pak kddovani

bude

(U()Ul ce Uk—l) — (u0u1 . un_l). [8]

3.3 Hamminguv kdéd, rozsireny Hamminguv kéd

Pozndmka 3.3.1. Existuji linedrni (n, k) kédy, které opravuji nékterd prijata
slova ligici se pouze v jednom znaku od kédového slova (nazyvame tzv. jednoduchd
chyba) pii prenosu dat. Aby linedrni (n, k) kéd opravoval vsechny jednoduché
chyby ve slové, je nutné, aby pocet sloupcu byl n = 2¢ — 1, kde c=n —k (c je
v tomto piipadé pocet radku) a dale je nutné, aby kontrolni matice tohoto kédu
neméla zadny sloupec nulovy a vSechny sloupce byly od sebe navzajem ruzné.
Z toho hned vyplyva jediny mozny tvar kontrolni matice (az na poradi sloupcu).
Pro ¢ = 2,3,4, ... dostdvame tedy linedrni (3,1),(7,4), (15,11),... kédy. [7]
Definice 3.3.1. Pro prirozené ¢islo ¢ > 2 definujeme Hamminguv kod délky
n=2°—1, kde ¢ = n — k jako linedrni (n,k) kdd, jestlize ma kontrolni ma-
tici H, jejiz sloupce jsou vsSechna nenulova slova dané délky a zadné z nich se
neopakuje. [9]

Pozndmka 3.3.2. V jednotlivych sloupcich kontrolni matice H Hammingova
kédu jsou vsechna éisla 1,23, ..., ¢ zapsdna ve dvojkové soustave. [7]

Véta 38.3.1. Hamminguv kéd délky n = 2¢ — 1 dokdze opravit jednu chybu. [9]
Véta 3.3.2. Necht G je generujici matice Hammingova (7,4) kédu

1000110
0100101
0010011
0001111
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pak kontrolni matice H Hammingova (7,4) kédu je ve tvaru

1101100 0001111
H=[1011010|~(0110011].[]
0111001 1010101

Pozndmka 3.3.3. Kontrola parity je metoda, ktera spoc¢iva v tom, ze k prenase-
né informaci pridame dalsi bit, tzv. paritni bit. Hodnotu tohoto bitu urc¢ime tak,
ze v nové vzniklém slové bude vzdy dohromady bud sudy pocet jednicek (tzv.
sudd parita) nebo lichy pocet jednicek (tzv. lichd parita). [9]

Definice 3.3.2. Samoopravny roz§ireny Hamminguv kdd je linedrni (n, k) kéd,
ktery vznikne rozsitenim Hammingova kodu o prvek z abecedy celkové kontroly
parity. Je to tedy (2™,2™ —m — 1) kéd vsech slov (vgvy ...vem) takovych, ze

(Vo1 . .. vam_1) je kédové slovo Hammingova kédu a plati
vom = (Vo + V1 + ...+ vam_1) mod 2. [I]

Pozndamka 3.3.4. Princip rozsiteni Hammingova kédu spociva v pridani prvku
z abecedy celkové kontroly parity ke kazdému radku kontrolni matice H a dale
doplnéni fadku jednicek. Tzn., Ze z linedrniho (n, k) kédu K vytvorime (n+ 1, k)

kéd vsech slov (vvy ... v,_1v,) takovych, ze plati
(Vovy ... V1) € K awv, = (vg+v1+...4+v,-1) mod 2. [9]

Nové vznikla kontrolni matice H* rozsiteného Hammingova kédu maé tvar:

D e
I . sudé parity
*_ H -
K= |
7777777 ‘70,
1 .. 1 } l
H_/
ntl

Obrazek 2: Rozsiteni kontrolni matice H Hammingova kodu

Definice 3.8.3. Necht H je kontrolni matice linedrniho (n, k) kédu. Syndrom

slova w je vektor 5, pro ktery plati 7 = H - w’. [7]
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Definice 3.3.4. Necht v je slovo vyslané kodérem a w je slovo piijaté dekodérem.
Pak e = w — v je chybové slovo. [T]

Pozndmka 3.3.5. Slovo chybové i ptijaté m4 stejny syndrom. Plati tedy H - w’
= H-eT. Jeli H-w" = 7, pak pii prenosu dat nedoslo k zaddné chybeé. Je-li
H - w’ # 7, pak pfi pienosu dat doslo alespoii k jedné chybé. Doslo-1i k jediné
chybé na pozici j, tak syndrom chybového slova je roven j-tému sloupci kontrolni
matice H. Tuto chybu opravime tak, zZe zménime hodnotu na pozici j na opa¢nou.
Jestlize tedy na pozici j byla 1, pak ji nastavime na 0 a opa¢né. Doslo-li k vice
nez jedné chybé pii prenosu dat, pak chybové slovo neni mozné opravit (resp.

zpétné zkonstruovat). [9]
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4 Kryptogratfie

4.1 Struény uvod do kryptografie

Kryptografie je védni disciplina, ktera se zabyva metodami ochrany dat pred
neautorizovanym piistupem. Cilem kryptografie je poslat nékomu zpravu tak, aby
zprave kromé odesilatele uz rozumél pouze jeji piijemce a nikdo jiny. Samotné
slovo kryptografie je odvozeno ze dvou slov - kryptos = skryty, graphein = text.
Ted je hned jasné, o éem kryptografie je. Nyni tedy formalné.

Definice 4.1.1. Otevienou abecedou rozumime konecnou mnozinu A znaku,
které pouzivame k zapisu nesifrovanych zprav. Otevrenym tertem rozumime zpra-
vu urcenou k zasifrovani, tj. koneény fetézec ¢ = c; ...c,, kde ¢; € A (n je délka
fetézce). Prostorem oteviengch textu nazyvame mnozinu vSech otevienych textu
a znacime C'. [10]

Definice 4.1.2. Sifrovaci abecedou rozumime koneénou mnozinu B znaki, které
pouzivame k zapisu zasifrovanych zprav. V pripadé, kdy B = {0, 1}, pak mluvime
o bindrnim Sifrovdni. Sifrovanym teztem rozumime koneény fetézec d = dy . .. d,
znaku Sifrovaci abecedy, ktery vznikl zasifrovanim nékterého otevieného textu
¢ € C. Prostorem Sifrovanych texti nazyvame mnozinu vsech sifrovanych textu
a znacime D. [10]

Definice 4.1.3. Klicem rozumime uspoiradanou dvojici k& = (r,s), kde r je
sifrovact kli¢ (parametr Sifrovaci metody) a s je desifrovaci kli¢ (parametr desifro-
vaci metody). Mnozina vsech kli¢u se nazyva prostor kliciu a znaéi se (). Navic
plati, ze (r,s) € Q. [10]

Definice 4.1.4. Konkatenaci vektoriu rozumime zietézeni neboli spojovani dvou

¢i vice vektoru do jednoho. Konkatenaci vektor budeme znacit symbolem .
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Definice 4.1.5. Substitucni tabulka je tabulka, kterd ke kazdému znaku dané
abecedy prifadi ¢iselnou hodnotu (resp. jiny znak).

Pozndamka 4.1.1. Znaky v substitucni tabulce jsou vétsinou umistény v prvnim
fddku. Ciselné hodnoty pak v dalsich fadcich. Bézna substituéni tabulka mé
znaky A — Z, které odpovidaji hodnotam 1 —26. V tomto textu budeme pracovat
s vlastnimi substitu¢nimi tabulkami.

Pozndmka 4.1.2. Sifrovacim klicem muze byt obecné cokoliv, co vytvori odesi-
latel (slovo, ¢isla, tabulka, ...). V tomto textu se omezime na Sifrovaci klice,
které budou mit charakter konkatenace vektoru a substituénich tabulek, a dale
na Sifrovaci klice, které budou reprezentovany Sifrovaci matici R. DeSifrovaci ma-
tice pak bude ve tvaru R!. U sifrovacich (resp. desifrovacich) matic se jesté navic
omezime na ¢tvercové matice.

Definice 4.1.6. Sifrovinim rozumime proces transformace otevieného textu do
zasifrovaného textu (neboli ,nesrozumitelného® textu). Desifrovani je inverzni
proces k Sifrovani, tedy jde o proces prevedeni zaSifrovaného textu do podoby
otevieného textu. [10]

Definice 4.1.7. Sifrovaci transformact (funkct) rozumime vzajemné jednoznacné
zobrazeni R, : C' — D definované pro vSechny Sifrovaci klice z prostoru klicu @).
Desifrovaci transformact (funkcd) rozumime zobrazeni Sy : D — C, které je in-
verzni k zobrazeni R, : C' — D, kde (r,s) € Q. [10]

Pozndmka 4.1.3. Vzajemnd jednoznacnost zobrazeni R, je nutnou podminkou
pro moznost zpétného desifrovani. [10]

Definice 4.1.8. Usporadana trojice (R, S, Q), kde

Q = {(r,s)} je prostor klict,

R ={R,|(r,s) € Q} je mnozina Sifrovacich transformaci,

S ={Ss]|(r,s) € Q} je mnozina desifrovacich transformaci,

tvori Sifrovaci systém, jestlize
Vk = (r,s) € QVc e C: S4(R,(c)) =c,

tedy kazdy kli¢ (r, s) jednoznaéné definuje dvojici transformaci R, a S, (Sifrovaci

a ji prislusnou desifrovaci), které jsou navzdjem inverzni. [10]
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Pozndmka 4.1.4. Sifrovéani se obvykle déli na dva typy. Prvnim typem je tzv.
asymetrické Sifrovani. Metody asymetrického Sifrovani jsou takové sifrovaci me-
tody, kde desifrovaci kli¢ je vypocetné slozité odvodit ze sifrovactho klice. Asy-
metrické sifrovani neni predmétem této prace. Druhym typem je tzv. symetrické
Sifrovani. Metody symetrického Sifrovani jsou Sifrovaci metody, kde desifrovaci
kli¢ je vypocetné snadné odvodit ze sSifrovaciho klice. V tomto textu si ukdzeme

nekteré aplikace symetrického sifrovani. [10]

4.2 Symetrické sifry

Transpoziéni Sifra

Definice 4.2.1. Transpozicni Sifra je blokova Sifra délky n, tj. Sifra, ktera nej-
prve rozdéli otevieny text na bloky délky n po sobé jdoucich znaku a poté kazdy
blok zasifruje jako celek. [10]
Pozndmka 4.2.1. Pokud délka otevieného textu neni nasobkem ¢isla n, muzeme
doplnit text libovolnymi znaky na délku rovnou prvnimu nésobku ¢isla n vétsimu
nez d, kde d je délka celého tetézce. V tomto textu bude jeden blok reprezentovan
jednim vektorem. [10]
Princip Sifrovdni: Sifrovaci kli¢ 7 nélezi mnoziné permutaci pfirozenych ésel
neboli 7 € S, kde n € N. Sifrovani poté probiha tak, ze nejprve rozdélime
otevieny text na bloky délky n po sobé jdoucich znaka, tj. ¢ = ¢V ... ™, kde
) = cgi) e c,(f) je i-ty blok. Nésledné kazdy blok ¢ zagifrujeme pomoci trans-
formace:

Rﬂ(cgi) o)) = cff()l) . cgf()n) ci=1,2,..., k. [10]

1 oznacuje inverzni

Princip desifrovdni: Degifrovaci klic 7= € S, kde 7~
permutaci k 7. Desifrovani poté probiha tak, ze nejprve zasifrovany text rozdélime
na bloky délky n po sobé jdoucich znaki, tj. d = dV...d®, kde d® = d\" ... 4

je i-t¥ blok. Nésledné kazdy blok d® desifrujeme pomoci transformace:

Spr(d? o d) = i =12, k10
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Afinni Sifra

Definice 4.2.2. Afinnid Sifra je sifra, ktera pti Sifrovani nejprve prevede otevieny

text ¢ = ¢1...c, na Ciselny fetézec ¢ = x1...x, a nasledné tento fetézec ¢ =

x1 ..., zasifruje. [10]

Pozndmka 4.2.2. Sifrovani se provede napiiklad tak, ze kazdy znak nahradime

jeho poradim v ramci uvazované oteviené abecedy - substituc¢ni tabulky. Dulezitym
faktorem pro afinnf sifru je sifrovaci kli¢, ktery je ve tvaru (a,b), kde a,b € Z,,

pricemz NSD(a,p) =1 (p v tomto piipadé nemusi byt prvocislo). [10]

Princip Fifrovdni: Sifrovaci kli¢ je tvaru (a,b), kde a,b € Zy,a NSD(a,p) = 1.

Sifrovani je poté vysledkem aplikace Sifrovaci funkce
Ry (1. .xp) = dy ... dy,
kde x; je ¢iselnd reprezentace i-tého znaku otevieného textu a
d; = ((a - z; + b) mod p)

je ¢iselna reprezentace i-tého znaku Sifrovaného textu. [10]
Princip deifrovdni: Desifrovaci kli¢ je ve tvaru (a1, b), kde a! je inverzni

prvek k a mod p. Desifrovani je pak vysledkem aplikace desifrovaci funkce
Sa-1p)(dy...dy) = a1 ... 2, kde z; = (a™' - (d; — b) mod p). [10]

Hzllova Sifra

Definice 4.2.3. Hillova sifra je substituéni blokova Sifra délky n, ktera je navic
polygrafickd, tj. nahrazuje m-tice znaku za jiné m-tice. [10]

Pozndmka 4.2.3. Substitucni Sifra je takova Sifra, ve které znaky otevieného
textu meéni svou identitu, ale neméni svou pozici. Hillova Sifra pracuje s mati-
cemi. Pokud délka otevieného textu neni nadsobkem c¢isla n, muzeme doplnit text
libovolnymi znaky na délku rovnou nejblizsimu vétsimu nasobku éisla n. [10]
Princip Fifrovdnd: Sifrovaci kli¢ je ve tvaru matice R = (rij) tadu n, kde
rij € Z, (p v tomto piipadé nemusi byt prvocislo). Sifrovén{ poté probihd tak, ze

nejprve rozdélime otevieny text ¢ na bloky délky n po sobé jdoucich znaku, tj.
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c=cW. ™ kde ¢ = .. Nasledns kazdy blok ¢,i = 1,2,...,k
prevedeme na &iselny fetézec z() = (xgl) ,...,xg)), ktery zaSifrujeme pomoci

transformace:
R(y") = 2% - R (modp),

kde y® = (yii), e ,yy(f)) je C¢iselny vektor reprezentujici i-ty blok zasifrovaného
textu d = (yM, ..., y®). [10]

Princip desifrovdni: Desifrovaci kli¢ je ve tvaru R™!, tj. inverzni matice R mo-
dulo p. Desifrovani probihd zcela analogicky jako Sifrovani. Tedy zaSifrovany text
rozdélime na ¢iselné bloky (vektory) ¥, i = 1,2, ...k, délky n, které desifrujeme

pomoci inverzni transformace:
Sp-1(zD) =y . R (mod p). [10]

Pozndmka 4.2.4. Existence inverzni matice R~! je nezbytnou podminkou pro
jednoznacné desifrovani. Lze dokazat, ze nutnou a postacujici podminkou je
NSD(detR, p) = 1. Navic plati vztah R- R™' = E (mod p). [10]

Véta 4.2.1. Transpozicni Sifra, afinni Sifra a Hillova Sifra patii mezi symetrické
sifry.

Poznamka 4.2.5. Existuji i dalsi symetrické sifry, naptiklad tzv. jednoduchd
substituce, Vigenerova Sifra, bindrni blokovd Sifra a dalsi. V tomto textu si vysta-
¢ime pouze s vyse definovanymi Siframi a jejich kombinacemi.

Pozndmka 4.2.6. Otevieny nebo Sifrovany text v Sifrovacich nebo desifrovacich
maticich budeme v tomto textu ¢éist vertikdlné nebo horizontalné. Cteni textu
vertikdlné nazyvame vertikdlni Sifrovani. Cteni textu horizontélné nazyvame ho-

rizontdlni Sifrovant.

vertikalni Sifrovant horizontdaini Sifrovani
12 R Qhn O3 = &
22 s Qlan Sz S
2 il Gmn ﬁml Gr'|'12 Omn

Obrazek 3: Vertikdlni a horizontélni Sifrovani
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Resené priklady
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1 Priklady z teorie grafu

Priklad 1

Zaddni: Dva kamaradi Martin a Petr se vsadili o ¢cokoladu, ze Martin nedokaze
spocitat pocet koster v neorientovaném grafu pripominajici pentagram. Petr Mar-
tinovi vysvétlil, co to kostra grafu je, pricemz obratem na to Martin zacal jednu
po druhé pocitat. Po chvili poéitani se Martin zastavil a premyslel, zda danou
kostru jiz nezapocital. Pomozte Martinovi spocitat pocet koster.

Resend: V prvni fadé vytvoifme neorientovany graf, ktery bude piipominat pen-

tagram a oznacime vrcholy a hrany.

Obrazek 4: Pentagram

Nyni sestavime Laplaceovu matici sousednosti L(G) tohoto neorientovaného grafu,

ktera bude mit tvar:

4 -1 -1-1-1

—14 —1-1-1
LG)=|-1-14 —1-1
~1-1-14 —1
~1-1-1-1 4
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Pocet koster budeme pocitat jako determinant Laplaceovy matice sousednosti

L(G) bez posledniho fadku a posledniho sloupce, tedy

4 —1-1-1
-1 4 -1-1

det | |, | =125
~1-1-1 4

Zjistili jsme, ze neorientovany graf pripominajici pentagram ma presné 125 koster

a tim padem jsme pomohli Martinovi vyhrat vsazku.

Priklad 2

Zaddni: Urcete hodnost matice incidence I(G) orientovaného grafu G = (V,E)
s [V(G)| = n vrcholy a |E(G)| = m hranami.

Nadapovéda: Zactnéte se stromem, pak uvazujte souvisly graf a nakonec zobecnéte
na jednoduchy graf.

Resend: V prvni fadé vytvoifme libovolny strom a rovnou k nému uréime matici

incidence I(Gy) a vypocteme hodnost h(I(G1)) této matice.

f 1 %6 0 @ b
~In 1 1 & 4
G =1g 01 1
IG)=]0 0 =10 0 0], RI(G))=F6.
G 0 0 =10 0
G 00 0-—10
0 0 O 0 @ =1

Obrézek 5: Strom s matici incidence a hodnosti této matice
Déle vytvotime libovolny souvisly graf. Opét k nému rovnou uréime matici inci-

dence I(G2) a vypocteme hodnost h(I(G2)) této matice.

¥ WY
Sl O O

Iay=| 0 6 1 0 —1], BKI(GC))=4
e iy @ % B
i =1 0 d 1

Obrazek 6: Souvisly graf s matici incidence a hodnosti této matice
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V posledni fadé vytvorime libovolny jednoduchy graf a postupujeme analogicky

jako v predchozich piipadech.

-1 0 0 -1

1 10 0 ol =
I{GH) U —_I. = U 5 h(..'.r((.r;.]):] — %

0 0 1 1

Obrazek 7: Jednoduchy graf s matici incidence a hodnosti této matice
Dochdzime k zdvéru, ze hodnost matice incidence I(G) orientovaného grafu je
h(I(G)) =n—1.

Pozndmka: Kdybychom v tomto textu uvazovali smycky v grafech, pak bychom
hodnost matice incidence I(G) mohli zobecnit i na obecny graf. Tento graf

v tomto textu nebyl definovan, avsak vysledek by byl stejny.
Priklad 3

Zadadni: Mlady inzenyr se rozhodl, Ze zalozi jednu nejmenovanou internetovou
spoleénost. Jako spravny zacinajici podnikatel si v prvni radé naSel potencialni
zdjemce a nasledné si zmapoval cesty k jednotlivym zijemcum. Vsechny tyto
hodnoty zaznamenal do matice sousednosti S(G). Naleznéte nejkratsi moznou
trasu ke vSem potencidlnim zdajemcum, tak aby je vSechny propojila a urcete

nejvhodnéjsi misto pro zalozeni spolec¢nosti.

0007410
000059 7
000 13010
S(G)=[7010400
453408 8
1900800
0710080 0

Reseni: V matici sousednosti S(G) hodnoty na misté si; urcuji, zda dva dané
vrcholy v; a v; jsou spojeny hranou ¢i nikoli. Pokud je graf ohodnoceny, pak kazdy
prvek s;; je roven ohodnoceni hrany e;. Dale si muzeme vSimnout, Ze tato matice
sousednosti je symetrickd, takze se bude jednat o ohodnoceny neorientovany graf,
ktery muze mit napf. nasledujici tvar:
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Obrazek 8: Ohodnoceny neorientovany graf ¢.1

Nyni budeme hledat minimélni kostru grafu. K nalezeni této kostry grafu vyuzijeme

Kruskalova algoritmu a rovnou udélame prvni krok algoritmu, tj.

Obrazek 9: Kruskaluv algoritmus
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Po dokonceni Kruskalova algoritmu vidime, Ze nejvhodnéjsim mistem pro zalozeni

nejmenované internetové spole¢nosti je misto (vrchol) s oznacenim vs.

Piiklad 4
Zaddni: Nakreslete souvisly graf zadany matici sousednosti S(G ). Pokud pii kon-
strukci tohoto souvislého grafu vznikne néjaké trojrozmérné téleso, vypocitejte

jeho objem a povrch.

07023000
70200300
02070030
20700003
30000702
03007020
00300207
00032070

Ndpovéda: Jisté se bude jednat o trojrozmeérné téleso. Pii sestrojovani tohoto
trojrozmérného télesa dbejte na to, aby hrany se stejnym ohodnocenim byly stejné
dlouhé a mély stejné sméry.

Resend: Analogicky jako v predchozim pifkladé vytvoifme neorientovany graf,
nebot matice S(G) je symetrickd. V matici sousednosti S(G) hodnoty na misté s;;
odpovidaji ohodnoceni hrany vedouci z vrcholu v; do vrcholu v;. Déle je potfeba
si uvédomit, ze se bude jednat o néjaké trojrozmérné téleso, které ma 8 vrcholi.
Dulezitym faktorem pii konstruovéani tohoto grafu je, aby hrany se stejnym ohod-
nocenim byly stejné dlouhé a mély stejné sméry (viz ndpovéda). Z tohoto duvodu

bude neorientovany graf vypadat nasledovneé:

Obréazek 10: Ohodnoceny neorientovany graf ¢.2
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Vidime, Ze nase hledané trojrozmérné téleso odpovida kvadru, jehoz strany maji
2, 3 a 7 jednotek. Objem kvadru je tedy V =a-b-c=2-3-7 = 42 jednotek
krychlovych a povrch kvadru je S = 2-(a-b+a-c+b-¢c) =2-(2-34+2-7+3-7) = 82

jednotek ¢tverecnych.

Priklad 5

Zadani: Postovni kuryr kazdy patek pravidelné rozvazi reklamni letaky do sedmi
navzajem riznych rodin. Zadné dvé rodiny neziji ve stejném mésté. Postovnimu
kuryrovi se posledni dobou zd4, ze prodélava penize na benzinu za cestu. Z to-
hoto duvodu si nakreslil mapu vSech mést, ve kterych rodiny ziji. Dale na mapé
vyznacil cesty, kterymi kdy projel a pripsal ke kazdé z nich pocet litru benzinu,
které za cestu spotieboval. Pomozte postovnimu kuryrovi nalézt nejlevnéjsi cestu
a urcete, kolik tato cesta bude stat K¢. Pro vypocet predpokladejte, ze cena za

jeden litr benzinu je 35 K¢.

Obrazek 11: Mapa vSech mést

Resend: Jednim z moznych zpisobii nalezeni této cesty je ji ndhodné zvolit
a doufat, ze je to nejkratsi, a tudiz nejlevnéjsi mozné cesta. Tento zpusob nenf jisté
vubec efektivni, a proto tuto ulohu vytesime jinak. K feseni tohoto piikladu nam
pomiuze Floyduv—Warshalliv algoritmus. Diky tomuto algoritmu zjistime limit
nejkratsi mozné cesty od vrcholu v; po vrchol v;. V prvnf fadé sestrojime matici
a nasledné budeme prepocitavat hodnoty v této matici dle Floydova-Warshallova

algoritmu.
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Obrazek 12: Floyduv—Warshalluv algoritmus

Vidime, ze limit vysel 38 litrti. Tento limit je nejmensi mozny v tomto piipadé.
Nejlevnéjsi cesta je tedy za 38 - 35 = 1330 Ké. Déle si muzeme z vysledné matice
vSimnout, Ze tato cesta zacind ve vrcholu s oznacenim v;. Nyni budeme vytvaret
strom vSech moznych cest a hledat tu nejmensi moznou (tedy do limitu 381).
Zacneme u vrcholu vy (pozn.: nezélezi na tom, kterym vrcholem zaéneme, protoze
musime objet vSechny vrcholy a vratit se do vrcholu puvodniho). Strom budeme
konstruovat ,odzadu®“ a budeme se drzet koncepce algoritmu prohledavani do

sitky. Navic pti konstruovani tohoto stromu budeme séitat hodnoty hran, kterymi
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se lze dostat do vrcholu v; z vrcholu v; a budeme ovérovat, zda jsme nevytvorili
cyklus, anebo jsme neprekrocili limit. Pro ilustraci: Chceme se dostat do vrcholu
Vg ,,odzadu“. Vytvotrime sled mezi vrcholy v; — vg — v5. Ohodnoceni hran secteme
a dostaneme 17 4+ 9 = 26/. Takhle budeme pokracovat dal, az nakonec vytvotime

nasledujici strom:

Obrazek 13: Strom vytvoreny prohleddvanim do sitky ,,odzadu*

Vidime, ze diky tomuto stromu jsme tedy nalezli nejkratsi okruzni cestu s limi-
tem 38(, kterou tvoii sled vrcholu vy — v4 — v3 — vy — V5 — V7 — Vg — V7.

Poznamka: Obecné neplati, ze Floyduv-Warshalluv algoritmus urci nejkratsi
okruzni cestu. To, ze nam to v tomto piipadé vyslo stejné, je ¢isté nahodné!
Tento ptiklad byl ilustraci tzv. problému nalezeni Hamiltonovského cyklu s li-
mitem K. Tento problém patii do tfidy NPTIME. Predchozi algoritmus mé ex-
ponencidlni ¢asovou slozitost, a proto neni v praxi pouzitelny. Vsechny pojmy
uvedené v tomto piikladu, jako napt. ,Hamiltonovsky cyklus® atd., jsou po-
drobné popsdny v odborné literature. Doporucuji napt. ucebni text Teoreticka
informatika, ktery je dostupny na tomto odkazu: http://phoenix.inf.upol.

cz/~jancarp/VAS/jancar-ti-vsb.pdf.
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2 Priklady z teorie kédovani

Priklad 1

Zaddni: Ovéite, zda mnozina kédovych slov tvoii linedrni (n, k) kéd a naleznéte

bazi a dimenzi tohoto kédu, pokud existuje.

a) K = {(11111),(11110),(11101),(11100),(00011),(00010),(00001),(00000) }

b) K = {(11111111),(10101010),(11011011),(01010101),(01110001),
(10001110),(10001110),(01110001) }

Resent a:

K = {(11111),(11110),(11101),(11100),(00011),(00010),(00001),(00000) }

- z teorie vime, ze kod je linearni, pokud tvoii linearni podprostor linearniho

prostoru Z3. Mnozina kédovych slov musi tedy byt uzaviend na operaci scitani

vektoru a nasobeni vektoru skalarem v Z3. Ovéiime.

(11111) + (11110) = (00001) v (11110) + (11101) = (00011) v/
(11111) + (11101) = (00010) v (11110) + (11100) = (00010) v/
(11111) + (11100) = (00011) v/ (11110) + (00011) = (00001) v
(11111) + (00011) = (11100) v/ (11110) + (00010) = (00000) v

Az bychom nakonec ovérili vSechny mozné kombinace a zjistili, ze tato mnozina
K je uzaviena na operaci sc¢itani vektort.

Ndsobeni:

1 - ,kodové slovo z K“ = kodové slovo z K“ v

0 - ,kédové slovo z K = (00000) v
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Vidime, ze mnozina K tvoii linedrni (n, k) kod. Nyni muzeme nalézt bazi a nasledné

uré¢it dimenzi tohoto linedarniho (n, k) kédu.

Baze:

11111
11110
11101
11100
00011
00010
00001
00000

11111
11110
11101
00010
00001
00000
00000
00000

11101
00010
00001
00000
00000
00000
00000
00000

Baze linedarniho kédu je napiiklad mnozina {(11101),(00010),(00001)}. Dimenze

tohoto kédu je 3. Jedna se tedy o linearni (5, 3) kéd.

Pozndmka: Skutecné se jednd o bazi tohoto linearntho (n, k) kédu. Kazda

linedrni kombinace téchto tii kédovych slov (vektoru) nam da nékteré kédové

slovo (vektor), které lezi v mnoziné K. Ovéite.

Reseni b:

K = {(11111111),(10101010),(11011011),(01010101),(01110001),(10001110),
(10001110),(01110001)}

- analogicky jako v piipadé a) ovéiime uzavienost na operaci s¢itani vektoru

a nasobeni vektoru skalarem v Z7.

(11111111) + (10101010) = (01010101) v/
(11111111) + (11011011) = (00100100) v/
(11111111) + (01110001) = (10001110) v
(10101010) + (11011011) = (01110001) v/

A tak pokracujeme dél, az bychom opét provéfili véechny moznosti. Pojdme se
nyni podivat na uzavienost nasobeni.

Nasobeni:

1 - ,kodové slovo z K“ =  kédové slovo z K“ v

0 - ,kédové slovo z K“ = (00000000) X
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Vidime, ze kédové slovo (00000000) nendlezi mnoziné K, a tudiz se nejedna
o linedrni (n, k) kéd. Béze a dimenze tohoto kédu neexistuji. Ovéite.

Pozndmka: Na zacatku tohoto prikladu v ¢dsti b) jsme si mohli vsimnout, ze
v mnoziné K nenf nulovy vektor 7, resp. kédové slovo (00000000) a tim padem

automaticky tato mnozina K nemuze byt linedrnim (n, k) kédem.

Priklad 2
Zaddni: Naleznéte nékterou kontrolni matici H, kdyz vite, ze generujici matice G

linearniho (n, k) kédu nad Zs ma tvar:

451 3 -12-2-23
113 1 133 22
—45-3-123-4-12
15-21-410 10

G:

Resend: V prvni fadé se budeme snazit o to, abychom tuto generujici matici G
dostali do tvaru (E|C), kde (E | C) je matice vznikld z G pomoci elementarnich

radkovych transformaci modulo 5.

451 3 -12-2-23 101342333 101342333
113 1 133 22 113113322 012321044
—45-3-123-4-12|"7 102423142 7 |o01131314]|"
15-21-410 10 103114010 002322232
100211024 100041301
010240230 010020012
“loo1131314| 7001021200
000110114 000110114

Nyni jiz neni slozité nalézt nékterou kontrolni matici H, tedy

-4 -2-2-110000 133410000
-10-1001000 404001000
H=1-30 -2-100100|~1203400100
0 -1 0 -100010 040400010
-1-20 —-400001 430100001

Pozndmka: Tento piiklad lze tesit i Gaussovou elimina¢ni metodou.
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Priklad 3
Zaddni: Naleznéte nékterou generujici matici G, kdyz vite, ze kontrolni matice H

linedrniho (n, k) kédu nad Z;; mé tvar:

21610 —75
H_(82—4 2 —36)

Resend: Budeme postupovat téméf analogicky jako v predchozim piiklade. Je-
dind zména bude ta, ze kontrolni matici H se budeme snazit upravit do tvaru
(CT|E), kde (CT | E) je matice vznikld z H pomoci elementdrnich fddkovych

transformaci modulo 11.
21-610-75 2141045 215104 5 21 5 1045
82 -4 2 —-36 827 2 86 408 404 —-10-2-101

714 440 1031 110 1031110
-10-2-101 -10-2-101 10091001

Neéktera generujici matice G ma tedy tvar:

1000 —-10 —10 100011
G- 0100 =3 O 1010080
0010 -1 -9 0010102
0001 -1 —10 0001101

Pozndmka: V tomto i predchozim piikladé skutecné plati vztah G - HT = O.

Ovérte.

Piiklad 4
Zaddni: Urcete, zda dany kod je cyklicky.

a) K = {(111111111)} d) K = {(111011001)}
b) K = {(100010101)} e) K = {(000000000)}
¢) K = {(100100100)} f) K = {(111000000)}
Resend:

a) Ano. Tento kdd je cyklicky. Cyklickym posunem doprava ¢i doleva dostdvame
tentyz kod. Jednd se o opakovaci kod délky 9.
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b) Ne. Uvazujme napiiklad generujici matici G, kterd ma tvar:

100010101
G=1110001010
011000101

Vidime, ze zadnou elementarni fadkovou transformaci se nedostaneme do tvaru
(£ C), tj. kéd neni cyklicky.

¢) Ano. Generujici matice G tohoto kédového slova je ve tvaru:

100100100
G=(1010010010
001001001

Jednd se o systematicky kéd K = {(abcabcabc); a,b, c € Zs}.

d) Ne. Uvazujme generujici matici G ve tvaru:

111011001 100101111
G=1111101100}~1100011010
011110110 011110110

Stejné jako v piipadé b) se nedostaneme do ndmi pozadovaného tvaru (E£|C).
e) Analogicky jako v pripadé a).

f) Ne. Generujici matice G tohoto kédového slova je ve tvaru:

111000000
G=(1000111000
000000111

Tento kéd se nazyva tzv. koktavy kod K = {(aaabbbcce); a,b,c € Zo} délky n.
V tomto pripadé kédové slovo nabyva délky 9. Permutaci znaku v tomto kédovém
slové 1ze vytvorit systematicky kéd, viz. priklad c).

Pozndmka: Koktavé kody jsou obecné linearni, ale postradaji systematické

kédovani, a proto nejsou cyklické.
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Priklad 5
Zaddni: Ovéite, ze bindrni kéd kontroly parity délky 3, K = {(000),(011),(101),
(110)}, generovany polynomem g¢(x) = = + 1 je cyklicky a navic urcuje toto
kédovani:

= (00)
= (01)
= (10)
(11)

=l @i @i @i

~

Reseni: V prvni fadé uréime bazi tohoto kédu, tj.

000 110
011 011
1017 looo
110 000

Kéd K je ekvivalentni mnoziné polynomu K = {0,z + 1,2? + 1,22 + z}. Zadané

kédovani muzeme rovnéz prepsat jako polynomy, tj.

T = (00) — 0
v = (01) — 1
v = (10) — z

Nyni hleddme polynom u(z) = v(z) - g(x). Hodnoty polynomu u(z) by mély byt
ekvivalentni hodnotdm kédu K (v pripadé, Ze se jedna o cyklicky kéd generovany

polynomem g(z)). Ovéfime.

u(@) =0 (z+ 1) = 0 < (000)

wx)=1-(x+1)=x+1< (011)

wx) =z (z+1)=2%+z & (110)
wrz)=(z+1) - (z+1)=2*+2r+1=2>+1< (101)

Coz je otekavany vysledek vzhledem k tomu, jak ndm vysla baze tohoto kodu.

Jedna se tedy o cyklicky kéd generovany polynomem g(z) = z + 1.
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Priklad 6

Zaddni: Uvazujme Hamminguv (7,4) kod a prijata slova

a) (1010101)
b) (1101110)
¢) (0010100)

Jaké slovo je chybné? Pokud pri prenosu doslo k jedné chybé, pokuste se tuto
chybu najit a zkonstruovat ptuvodni slovo.

Reseni: Kontrolni matice Hammingova (7,4) kédu m4 tvar:

0001111
H={0110011
1010101

Hledame syndrom kédového slova w, tj. vektor 5 = H-w?.

@)

1

0
0001111 1 0
0110011)-101=10
1010101 1 0

0

1

Vidime, ze ndm syndrom vysel nulovy, tj., pfi pfenosu nedoslo k zadné chybé.

b)

1

1
0001111 0 1
0110011 1{=160
1010101 1 0

1

0

Syndrom slova vysel nenulovy, takZze pii prenosu doslo k chybé. Syndrom 3 je
ekvivalentni ¢tvrtému sloupci kontrolni matice Hammingova (7,4) kédu, z ¢ehoz
vyplyva, ze je potieba opravit ¢tvrty bit prijatého slova na kédové slovo w =

(1100110).
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0

0
0001111 1 1
0110011 01=11
1010101 1

0

0

Analogicky jako v predchozim pripadé nam vysel nenulovy syndrom, takze opét
doslo pti prenosu k chybé. Syndrom odpovida Sestému sloupci kontrolni matice
Hammingova (7,4) kdédu, tj. opravime Sesty bit. Puvodni kédové slovo bylo ve

tvaru w = (0010110).

Priklad 7
Zaddni: Uvazujme samoopravny rozsireny Hamminguv (8,4) kéd a prijatd kodova

slova

a) (10110110)
b) (10011001)
¢) (11100111)

Které ze slov bylo chybné prijato? Pokud je mozné, chybné prijata slova opravte
a napiste puvodni kédové slova.

Resend: Kontrolni matici samoopravného rozsifeného Hammingova (8,4) kédu
vytvoiime z kontrolni matice Hammingova (7,4) kédu pridanim jednotkového

radku a nulového sloupce, tj.

00011110
01100110
10101010
11111111

Analogicky jako v predchozim ptikladé hledame syndrom kédového slova w, tj.

vektor § = H* - w?.
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1

0
00011110 1 1
01100110 11 |1
101010160 ol |1
11111111 1 1

1

0

Pti prenosu doslo k jedné chybé. Je potieba opravit sedmy bit kédového slova.

Puvodni kédové slovo bylo w = (10110100).

b)

1

0
00011110\ [o0 0
01100110 1 o
10101010 1|~ o
11111111 0 0

0

1

Prijaté slovo odpovida odeslanému slovu. Pti pirenosu tedy nedoslo k zadné chybé.

¢)

1

1
00011110\ |1 0
01100110| f[o] [o
10101010f |o]~ |1
11111111 1 0

1

1

Pii prenosu doslo k vice nez 1 chybé, a proto puvodni kédové slovo nelze zkon-

struovat.
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3 Priklady z kryptografie

Pozndmka: U prikladu kombinace afinni a Hillovy Sifry budeme pracovat nad
mnozinou Z,. U téchto piikladu budeme vyuzivat operaci modulo n. Tuto operaci
pouzijeme pokud budeme hledat deSifrovaci matici ve tvaru R~!, anebo vysledna

¢isla v maticich prekroc¢i velikost substituéni tabulky.

Priklad 1

Zaddni: Pieved'te do bindrni reprezentace a zasifrujte nésledujici text:

, Co jsem vads opustil, mam oc¢i v dusi jen,
a skutecny miyj zrak, ktery mé kroky vidi,
uz prestal pracovat a zpola oslepen,

po pravdé nevidi, i kdyz se zdd, Ze vidi. “

(uryvek se Shakespearovy knihy Sonety, vers 113), kde kazdy symbol z oteviené
abecedy zasifrujte presné do 7 bitu.

Resend: V prvni fadé zvolime vhodné kédovani, napf. klasické ASCII (muze
byt klidné i UTF-8, Windows-1250, atd.). Nyni pfevedeme vsechny symboly od
dolnich uvozovek po horni uvozovky do symboliky ¢isel pomoci nami zvolené
ASCII tabulky. (ASCII tabulka neuvazuje diakritiku, takze ani my ji zde nebu-

deme uvazovat). Dostavame tedy tvar:

,07 111 32 106 115 101 109 32 118 97 115 32 111 112 117 115 116 105 108 44
32 109 97 109 32 111 99 11 32 118 32 100 117 115 105 32 106 101 110 44 97
32 115 107 117 116 101 99 110 121 32 109 117 106 44 32 107 116 101 114 121
32109 101 32 107 114 111 107 121 32 114 105 100 105 44 117 122 32 112 114
101 115 116 97 108 32 112 114 97 99 111 118 97 116 32 97 32 122 112 111 108
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97 32 111 115 108 101 112 101 110 44 112 111 32 112 114 97 118 100 101 32
110 101 118 105 100 105 44 32 105 32 107 100 121 122 32 115 101 32 122 100
97 44 32 122 101 32 118 105 100 105 46“

Zde mame presné 153 ¢isel, které bychom mohli vyjadrit jako 51 vektoru, kde
kazdy vektor ma pravé 3 souradnice (nebo také napt. 17 vektort o 9 souradnicich,
atd.). Takze bychom méli napi. vektor u; = (67,111, 32), uy = (106, 115,101),
atd. Kazdou slozku kazdého vektoru prevedeme do dvojkové soustavy. Tj. dosta-
neme u; = (1000011,1101111,0100000), uy = (1101010,1110011,1100101), atd.
Kdyz chceme vektory zasifrovat, musime si vytvorit néjaky sifrovaci kli¢. Z tohoto

duvodu zvolime sifrovaci kli¢ napt. takovy:
r=u; ® Uy ® U3 ® ... ® Uz
Vysledny zasifrovany text ma nasledujici tvar:

,1000011,1101111,0100000,1101010,1110011,1100101,1101101,0100000,1110110,
1100001,1110011,0100000,1101111,1110000,1110101,1110011,1110100,1101001,
1101100,0101100,0100000,1101101,1100001,1101101,0100000,1101111,1100011,
0001011,0100000,1110110,0100000,1100100,1110101,1110011,1101001,0100000,
1101010,1100101,1101110,0101100,1100001,0100000,1110011,1101011,1110101,
1110100,1100101,1100011,1101110,1111001,0100000,1101101,1110101,1101010,
0101100,0100000,1101011,1110100,1100101,1110010,1111001,0100000,1101101,
1100101,0100000,1101011,1110010,1101111,1101011,1111001,0100000,1110010,
1101001,1100100,1101001,0101100,1110101,1111010,0100000,1110000,1110010,
1100101,1110011,1110100,1100001,1101100,0100000,1110000,1110010,1100001,
1100011,1101111,1110110,1100001,1110100,0100000,1100001,0100000,1111010,
1110000,1101111,1101100,1100001,0100000,1101111,1110011,1101100,1100101,
1110000,1100101,1101110,0101100,1110000,1101111,0100000,1110000,1110010,
1100001,1110110,1100100,1100101,0100000,1101110,1100101,1110110,1101001,
1100100,1101001,0101100,0100000,1101001,0100000,1101011,1100100,1111001,
1111010,0100000,1110011,1100101,0100000,1111010,1100100,1100001,0101100,
0100000,1111010,1100101,0100000,1110110,1101001,1100100,1101001,0101110%
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Pozndmka: Jedna se o transpoziéni sifru. Pokud by bylo potieba zasifrovanou
zpravu desifrovat, museli bychom znét sifrovaci kli¢ a zvolené kédovani (v tomto
pripadé ASCII). Desifrovani by poté probihalo tak, ze bychom zaSifrovany text
prevedli do dekadické soustavy, nasledné vytvorili 51 vektoru o 3 souradnicich
a poté kazdou soutadnici kazdého vektoru prevedli do symboliky znakt pomoci

ASCII tabulky. Tato ASCII tabulka je obsazena v ptiloze na konci tohoto textu.

Priklad 2

Zadani: Zasifrujte zpravu:
»Jsme jako kocka a mys“
pomoci Morseovy abecedy, kde Sifrovaci klic R je ve tvaru:

1201210
2110121
3211321
R=(10101230
1121211
1021012
3101231

Pro vypocet volte nasledujici substituci:

~

Reseni: Text prelozeny do Morseovy abecedy je ve tvaru:
e e [ e B B R e P P

=l === = =]

Text po pouziti substituce je ve tvaru:

?

L01112000211202201112012101211122101211121
0102101201220122112101120002°“.
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Sifrovaci matice R je fddu 7. Abychom mohli text zasifrovat, musfme nalézt ma-
tici, kterd v sobé bude obsahovat vSech 69 cisel, a navic musi hledana matice
spliovat kritérium pro nasobeni, tj. hleddme matici typu 7 x m. Nejblizsi hle-
dané m, které obsahuje vSechna cisla je m = 10, takze dostavame matici 7 x 10
(70. ¢islo v matici bude reprezentovat prazdny symbol |, ktery je substituovén
za hodnotu 2, a tudiz nepfijdeme o zaddnou informaci). Nyni jiz muzeme zpravu

zasifrovat. Cisla do hledané matice zapiseme tak, jak jdou za sebou a vyndsobime

s matici R.
1201210 0111200021 79 65126 5610 9
2110121 1202201112 5 910612 6 751211
3211321 0121012111 1014149211099 20 16
0101230 22101211121 =]181092101087 9 10
1121211 1010210120 7 911612 8 871311
1021012 1220122112 5 71058 6 741011
3101231 1011200022 9 1313618108 717 15

Pokud bychom nyni ocislovali otevienou abecedu napt. od indexu 1, tj. 1 = A,
2 =B, 3 = C atd. a nasledné cisla ve vysledné matici timto zptusobem substitu-

ovali, dostali bychom matici ve tvaru:

GIFELFEF JI
EI JFLFGETLK
JNNIUJIITP
HJIBJJHGTI J
GIKFLHHGMK
EGJEHFGD JK
IMMFRJHGOQ O

Odkud tedy sifrovand zprava muze mit napt. tvar:

,GIFELFEFJIEIJFLFGELKJNNIUJIITP
HJIBJJHGIJGIKFLHHGMKEGJEHFGDJKIMMFRJHGQO*.

Pozndmka: Jednd se o afinni Sifru se Sifrovanim pomoci matice a substituéni
tabulky. Desifrovani by probihalo tak, ze zaSifrovany text by byl vlozen do nale-

zené matice typu 7 x 10 dle schéma horizontalniho Sifrovani. Tuto matici ozna¢me

o8



napt. X. Nasledné by znaky v matici X byly substituovany za ¢isla (pomoci sub-
stituéni tabulky). Déle by bylo potfeba nalézt desifrovaci matici, ktera by byla ve
tvaru R~! (piredpokladem je, Ze zname Sifrovaci matici R). Tyto matice bychom
poté spolu vynasobili, tj. R~!- X, ¢éfmZ bychom nalezli matici Y. Hodnoty z této
matice Y by bylo potom potfeba vypsat na fadek (opét dle schéma horizontalniho
sifrovani) a nasledné tento Sifrovany text substituovat dle tabulky Morseovy abe-

cedy. Tato tabulka Morseovy abecedy je obsazena v priloze na konci tohoto textu.

Priklad 3

Zadani: Zasifrujte text:
, Podstata matematiky spocivd v jeji svobodé“ (Georg Cantor).

K sifrovani pouzijte kli¢c R, ktery je ve tvaru:

327

R=1514

231

a substitucéni tabulka ma tvar:

A/IAIB|C|C|D|IE|IE|F|G|H|T|T1|J|K]|L
o123 [4|5|6|7[8]9 1011|1213 |14 ] 15
MINIO|P|Q|R|S|T|U|V | W|X|Y | Z]|_
16 [ 17 118 11920 |21 [ 221231242526 |27 (2812930

Resend: Text, ktery budeme sifrovat, bude ve tvaru:
,PODSTATA MATEMATIKY_SPOCIVA_V_JEJI_.SVOBODE*,
nebot tabulka nezavddi mald pismena. Nyni muZzeme pismena substituovat za
¢isla, tj.
21918522253 02303016023616023 1114 2830221918 4 12251 30
25 83013613 12 30 22 25 18 2 18 5 T

Odtud dostavdme 12 matic typu 3 x 1 (resp. 12 transponovanych vektoru, které

maji pravé 3 soutadnice). Nyni tyto matice vyndsobime Sifrovacim klicem R.
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327 19 128 8 F
514)-(18] =133 =313 =|J
231 5 97 7 E
327 292 112 22 S
514)-123] =133 =3 [13)| =|T
231 0 113 23 T
327 23 279 9 G
5141-[0]=123)=|25]=|V
231 30 76 16 M

A7z bychom dostali zasifrovanou zpravu:
LFJESITGV M ZSVQMAGBCY O OAGECZH Q V L. SCXH Y MDAHTCY*,

Pozndmka: Jednd se o kombinaci afinni a Hillovy Sifry. Desifrovani by v tomto
pripadé probihalo tak, ze zasifrovany text by bylo potieba rozdélit na 12 trans-
ponovanych vektoru o 3 soufadnicich. Tyto vektory bychom nésledné ptevedli
na ¢isla (pomoci substituéni tabulky). V dalsim kroku by bylo nutné nalézt
desifrovaci matici R~!. Néasledné by pak kazdy vektor byl ndsoben s touto matici
R7' tj. R7Y - (7)), efmz bychom dostali 12 matic typu 3 x 1, které by bylo
potieba pomoci substituéni tabulky prevést do symboliky znaki.

Piiklad 4

Zadani: Méjme zasifrovany text , XKXTDXBTFGSN“. Dale uvazujme desifro-
vany text , KRYPTOGRAFIE“ a nasledujici substitucni tabulku:

A[B|C|D|E|F|G[H|IT|[J|K|L{M[N|O|P|Q|R[S|T|U|V|IWIX|Y|Z
11(1814(22]6|3(24|12{2[9]10[ 1|8 |7 [13]25{14]5]|19]0 [20]17]15[16]23|21

Naleznéte Sifrovaci klic a nasledné urcete desifrovaci klic.
Reseni: V prvni tfadé substituujeme znaky Sifrovaného i desifrovaného textu

pomoci substituéni tabulky za ¢isla.

JXKXTDXBTFGSN*“ = ,16 10 16 0 22 16 18 0 3 24 19 7%
JKRYPTOGRAFIE* = ,11523250 1324511 3 2 6¢
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Obeé slova maji 12 znaki, takze maji po substituci 12 ¢isel. Sifrovaci matice bude
jisté typu 2 x 2, nebot 12 = 2 -2 -3 (kdyby sifrovaci matice byla typu 3 x 3,
zbyla by nam 3 ¢isla, a kdyby matice byla 4 x 4, tak by ndm 4 ¢isla chybéla).
Nyni si musime uvédomit, ze Sifrovaci matice je vzdy ,nalevo® a také to, ze cisla
muzeme zapsat jako transponované vektory, anebo jako ¢tvercové matice. Timhle
zpusobem bychom tedy dostali 6 transponovanych vektoru o 2 souradnicich (jiné
byt nemohou), anebo 3 ¢tvercové matice fadu 2. Pokud bychom uvazovali ¢tver-
cové matice, museli bychom ¢éisla zapisovat do matice po radcich. Nyni je uz jedno,

co zvolime. Takze napt. vezmeme ¢tvercové matice fadu 2, tim tedy dostaneme
acy 1123\ (16 16
bd 525) \10 0 /)’
acy 0 24\ (2218
bd 135) \16 0 )’
acy 112y (319
bd 36/ \247)°

Nyni vyuzijeme definice soucinu matic a diky tomu ziskdme 3 soustavy linearnich

rovnic o 4 neznamych. Nam staci vzit pouze jednu soustavu (zbylé 2 musi dat

stejny vysledek), tj.

11la + 5¢ = 16,
23a + 25¢ = 16,
116+ 5d = 10,
23b+ 25d = 0.

Tuto soustavu linedrnich rovnic vyfeSime, ¢imz ziskame feSeni, které bude ve

25 6 23
65 _E} Tim jsme ziskali puvodni Sifrovaci matici

a nyni se budeme zabyvat hledanim desifrovaci matice. Tu ziskame tak, ze k této

tvaru {a,b,c,d} = {2;

Sifrovaci matici vypocitame matici inverzni.

6 23 6
2 —2|1 10| =2 -2
5 10 %% 75
25 23 25
= 2o 1= -2
6 16/ " T;
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Priklad 5

Zadadni: Méjme zasifrovany text:

LOC.KQITIZ P GORZ [ GZNHMZWFEDPJII C IZU. D*.

Sifrovaci matice R je ve tvaru:

21351
12513
R=|47024
58162
10350

a substituéni tabulka mé nésledujici charakter:

A/B|C|ICIDIE|F|G|H|T|T]]J
ol1]23]4[5]6]7819]10]11

12

13

14

15

O[P[Q[R[S[T|U[V[WI[X]Y

16 [ 17 |18 |19 |20 | 21 | 22 | 23 | 24| 25 | 26

27

28

29

30

Rozsifruje tuto zpravu.

Reseni: Desifrovaci matici sifrované zpravy budeme hledat ve tvaru R

21351110000
1251301000

103 500000 1
022263010029

4702400100 | ~ 1 0718124/0010 26

5816200010
1035000001

103 5 0|0 0001 103 5 0
01272511 00028 0127251
009 1727123 01010 | ~ 100 1 1126
0010212422 0 0111 000 1 4
008 6 1]12800 3 000 8 3
103 5 000001 103 50
012725 1|1 0 0 0 28 0127250
0011126(2529 1 0 7 |~ (001110
000 1 4(121020 1 1 000 10
000 0 12 19122229 000 01
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10300
012700
00100
00010
00001

10 0 2015 6
19 11 28 23 24
19 21 27 25 8
4242 3 5
2 19122229

10000
01000
00100
00010
00001

132729 0 12
16 14 19 8 18
19 21 27 25 8
4242 3 5
2 191222129

Desifrovaci kli¢ je tedy ve tvaru:

132729 0 12
16 14 19 8 18
1921 2725 8
4242 35
2 19122229

Zagsifrovany text substituujeme za cisla dle substituéni tabulky, ¢imz ziskdame

Sifrovany text ve tvaru:

L1016229 121892192717 716192710727158 14272464 17119 10
310 27 22 28 4“.

Tato ¢isla muzeme zapsat jako 7 transponovanych vektoru o 5 souradnicich, tedy

10 18 17 10 14 17 10
16 9 7 7 27 11 27
2, {2t], 16,27, [2¢4].] 9], |22

29 9 19 15 6 10 28
12 27 27 8 4 3 4

Nyni kazdy tento vektor vynasobime s deSifrovaci matici R, tj.

132729 0 12 10 764 14 M
16 14 19 8 18 16 870 0 A
19212725 8 |- | 2 | =140l | =5 |21 | = | T
4242 3 5 29 275 ) E
2 19122229 12 1334 14 M

Az nakonec dostaneme desifrovany text:
JMATEMATIKA_UCI:_NEPREHLIZEJTE_NULY.* (Gabricl Laub).
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Pozndmka: Jedné se o kombinaci afinni a Hillovy &ifry. Sifrovani zpravy bylo

nazorné predvedeno v piikladu 3.

Priklad 6

Zaddni: Profesionalni zvédi uz néjakou dobu mapuji terén ve valecné zoné. Jejich
cilem je prolomit zasifrované zpravy nepftitele. Jeden zvéd zjistil, ze nepiatelé
k sifrovani pouzivaji jako kli¢ slovo , TRANSPORT“ a substituéni tabulku, ktera
u pocatecniho symbolu A mé index 3 a u koncového prdzdného symbolu ma
index 29. Dale zvéd zjistil, ze indexy jsou usporadany vzestupné a ze tabulka

ma 26 znaku. Pti poslednim patranim se zvédum podarilo najit listek s timto
vzkazem:
,984 307 15305 855 602 874 573 862 353

1072 405 1595 912 820 1125 490 1115 432
1148 425 1711 959 871 1225 520 1249 456

Obrazek 14: Ziskany listek se vzkazem

Pokuste se desifrovat zpravu pomoci zjisténych informaci od profesionalnich
zveédu.

Resend: Jisté budeme pracovat s tabulkou, kde po¢ateéni symbol je pismeno A
s indexem & a tabulka koné¢i prazdnym symbolem s indexem 29 a navic indexy

jsou usporadany vzestupné, tj.

A/B|C|IDIE|F|G|H|T|J K|L|M|N|]O
314516 | 78191011 |12 1314|115 |16 |17

PIQ|R|[S|T|U V W|X|Y]|Z
18 |19 120 | 21 | 22 |23 |24 | 25|26 |27 | 28|29

Sifrovaci kli¢ po substituci bude ve tvaru ,22 20 8 16 21 18 17 20 22, z ¢ehoz
muzeme vytvorit Sifrovaci matici R, kde
2220 3

R=]16 21 18
17 20 22
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7Z této sifrovaci matice R ziskdme deSifrovaci matici ve tvaru R™!, tedy

102 —380 297
R1'=—.|—-46 433 —348
1213\ _37 _100 142

Sifrovany text vlozime do matice tak, jak je zapsany a vynasobime jej s desifrovaci

matici R71, tj.

1 102 —380 297 984 307 1305 855 602 874 573 862 353
e —46 433 —348 | - | 1072 405 1595 912 820 1125 490 1115 432
—37 =100 142 1148 425 1711 959 871 1225 520 1249 456

28 32921 7 212229 6
=1161129182017 4 7 10
16 729111624 3 28 7

Cisla ve vysledné matici muzeme dle substituéni tabulky substituovat zpét a do-

staneme desifrovany text:
+ZA SEST DNI PROBEHNE INVAZE*,

¢imz jsme prolomili Sifru a zjistili, Ze profesiondlni zvédi méli spravné informace.
Pozndmka: Jedna se o afinni Sifru se Sifrovanim pomoci matice a substituéni
tabulky. Sifrovaci matice R je ,schovédna® ve slove ,TRANSPORT* (diky ¢emuz
dokazeme vytvorit sifrovaci matici fadu 3). Pokud bychom chtéli zpravy sifrovat,
bylo by potieba prevést otevieny text na matici 3 X m (popf. na sloupcové
vektory o 3 soufadnicich). Sifrovaci matici R bychom nésledné s touto matici
3 x m (popf. s témito sloupcovymi vektory) vyndsobili, ¢imz bychom dostali
zasifrovanou zpravu v ¢iselné podobé. Pokud by bylo potieba zpravu reprezento-
vat znaky, mohli bychom vyuzit substituéni tabulky. Dulezitym faktorem je, aby

piijemce znal klicové slovo, diky kterému lze vytvoiit desifrovaci matici R~

Priklad 7
Zaddni: Jednoho dne manzel v postovni schrance nasel dopis, ktery byl pro

manzelku a po neopravnéném otevieni nasel tento vzkaz:
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Obrazek 15: Vzkaz v dopise

Manzelovi to ptislo zvlastni, a proto jako kazdy zarlivy muz vse manzelce vycetl.
Zena mu poté fekla, ze m4 tajného milence, se kterym si néjakou dobu dopisuje
a schazi se. Dale mu prozradila, ze zaSifrovany vzkaz nema s Braillovym pismem
nic spole¢ného, avsak samotnd zprava je timto pismem psédna. Manzel zabrblal,
ze je mu tato informace k nicemu, kdyz nezné deSifrovaci kli¢c. Vytocenda zena
omylem prozradila, ze deSifrovaci kli¢ v sobé ukryva 3 stejnd cisla. Na zavér
dodala, ze s milencem skonci, pokud manzel Sifru prolomi a vzkaz rozlusti. Jak
ma manzel postupovat, aby zachranil manzelstvi?

Resend: V prvni fadé si doplnime prazdnd mista napf. pomlékou, takze tajny

vzkaz bude vypadat nésledovneé:

Obrazek 16: Vzkaz doplnény o pomlcky

Déle je potfeba si uvédomit, ze mezi Braillovym pismem a touto Sifrou bude
urcité néjaky vztah. Kazdy znak v Braillové pismé je zapsan do tabulky 3 x 2,
vétsinou symbolikou pomoci tecky a pomlcky. Takze bychom text méli trochu

preusporadat a to nasledovneé:

Obréazek 17: Preuspotadany vzkaz
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Tak, ted uZ to nevypada tak strasidelné. Nyni muzeme zavést substituci, napf.
tecka = 1, pomlcka = 0. Pokud bychom kazdou Sestici uzavorkovali, dostali

bychom nésledujici matice:

00 1o 00 10 11 00 11 10 01
01 0 11 01 10 I ( 00 00 1 0
11 11 10 01 1 10 10 11 10

Obrazek 18: Vzkaz jako matice

Nyni si staci uvédomit, ze desifrovaci klic musi byt ve tvaru ctvercové matice,
ktera splnuje nésledujici podminky:

1. Tato matice je fadu 3 a je regularni.

2. Tato matice je desifrovaci (tudiz je inverzni k sifrovaci matici).

3. Touto matici 1ze vyndsobit vSechny matice, které jsme dostali po substituci.
4. Tato matice nemuze obsahovat jina ¢isla nez 0 a 1 (tedy tecky a pomlcky po
substituci) - kdyby obsahovala, nikdy bychom nedostali vysledné matice, které
by obsahovaly jen 1 a 0, takze by nebyl mozny preklad Braillova pisma.

5. Tato matice obsahuje 3 stejna cisla.

Kdyz vsech téchto 5 podminek ddme dohromady, pak je jasné, ze desSifrovaci
matice musi byt étvercova matice fadu 3, kterd ma na vsech mistech bud’ 1 nebo 0,
pficemz plati, Ze v matici budou bud’to tii jednicky a Sest nul, anebo tfi nuly
a Sest jednicek. Moznost, kdy v matici bude Sest jednicek a tfi nuly, muzeme

hned zavrhnout, protoze staci uvazovat napr.

001 00 11 001 00 11
o11]-{or]=1{12]),(1o1]-{o1)=(11],...
111 11 12 111 11 12

Vidime, ze i kdybychom vzali libovolnou ¢tvercovou matici fadu 3 se Sesti jednic-
kami, ktera by splinovala vSech 5 podminek uvedenych vyse, potom by vysledna
matice v sobé obsahovala ¢iselné hodnoty 2 (nebo i 3), a to nemuze nastat (viz

bod 4). Z tohoto duvodu ndm zbylo pouze Sest desifrovacich matic a to tyto:
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100 001 001 010 100 010
010}),{010),(100]),{001),]1001}|,{100
001 100 010 100 010 001

Nyni postupné kazdou z nich vyndsobime s vyslednymi maticemi (text po sub-

stituci). Pro prvni ¢tvercovou matici 3 x 3 dostaneme stejny text. Jak to vypada

s dalsi ¢tvercovou matici?

001 00 11
010]-{01] =101
100 11 00
001 10 11
010]-{01] =101
100 11 10

Az bychom dostali tyto matice:

11 11 10\ /01 10 10 10 11 10
o1],(o1],{o1],{to],[1o]),{11],{l00],[00]),[10],
00 10/ \oo 10 11 00 11 10/ \o1

coz bychom ptevedli na tecky a pomléky (navrat do substituce). Kdybychom méli
po ruce tabulku Braillova pisma, podivali bychom se, zda ndhodou néjaké znaky
neodpovidaji prislusnym ,maticim*“. Zjistili bychom, ze takovyto zdpis nam da

odpoveéd:
,DNES V 8 U ME*“.

Tim jsme prolomili Sifru a smutnému manzelovi zachranili manzelstvi.

Pozndmka: Na konci tohoto piikladu je slovo matice v uvozovkach, protoze se
nejednd o takové matice, jaké je zname, nybrz o matice, ve kterych se vyskytuji
jen pomlcky a tecky. Tabulka Braillova pisma je obsazena v priloze na konci

tohoto textu.
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Priklad 8

Zadani: Desifrujte tuto zpravu:

L,071 6721 671 6732 671 792 803 6721 6765 825 220 770 550 6765 6721 825 704
220 6710 803 814 715 220 704 6743 220 737 792 671 814 825 6752 825 6710
759 2554 220 814 671 6721 220 6710 803 814 715 220 704 6765 792 671 693
759 220 671 220 6710 671 220 616 671 6765 803 6732 759 220 671 7810 220
803 715 6743 2352 693 715 814 6732 759 220 6743 6765 6710 759 220 682°,

kdyz vite, ze k zasifrovani zpravy byl pouzit jedenactindsobek vektoru. Dale vite,
ze Cisla byla zapsdna hexadecimélné a byla pouzita ASCII tabulka pro sifrovani.
Bohuzel ale nevite, v jakém poradi byly vektory usporadany.

Resend: V prvni fadé si spocitdme pocet ¢isel v kédované zprave a zjistime, ze
jich je 84. Téchto 84 ¢isel muzeme vyjadrit jako 7 vektoru o 12 souradnicich (nebo
také napft. 14 vektoru o 6 souradnicich, atd.). Budeme tedy uvazovat kombinaci
7 vektoru o 12 soutadnicich (i kdyz nevime v jakém potadi byly tyto vektory

usporddany). Takze dostdvame

ur = (671 6721 671 6732 671 792 803 6721 6765 825 220 770),
us = (550 6765 6721 825 704 220 6710 803 814 715 220 704),
uz = (6743 220 737 792 671 814 825 6732 825 6710 759 2354),
EA: (220 814 671 6721 220 6710 803 814 715 220 704 6765),
= (792 671 693 759 220 671 220 6710 671 220 616 671),
ug = (6765 803 6732 759 220 671 7810 220 803 715 6743 2332),
uy = (693 715 814 6732 759 220 6743 6765 6710 759 220 682).

Nyni muzeme kazdy vektor vydélit 11, tj.

uy = (61 611 61 612 61 72 73 611 615 75 20 70),
us = (50 615 611 75 64 20 610 73 74 65 20 64),
uz = (613 20 67 72 61 74 75 612 75 610 69 214),
uy = (20 74 61 611 20 610 73 74 65 20 64 615),
uz = (72 61 63 69 20 61 20 610 61 20 56 61),
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ug = (
—>
Uy

615 73 612 69 20 61 710 20 73 65 613 212),
= (63 65 74 612 69 20 613 615 610 69 20 62).

Vime, ze ¢isla byla zakédovana hexadecimalné a tato ¢isla jsou ve tvaru: 0 1 2 3

45678910A B CD FE F,dky ¢emuz muzeme vytvorit tabulku:

0

1

213

4

5/6|7|/8|9|A|B|C|D|E|F

0

1

213

4

216 (7819|1011 12|13 14|15

Déle vime, ze hexadecimalni ¢isla v ASCII tabulce jsou zapsana jako dvoucifernd

¢isla, takze nyni budeme substituovat posledni 2 ¢islice (u tiicifernych éisel) za

znaky A-F.

_
Uy =
—_>
Uy =
N
Uz =
N
Uy
U5
_
U =

_
U7 =

(
(

61 6B 61 6C 61 72 73 6B 6F 75 20 70
50 6F 6B 75 64 20 6A 73 74 65 20 64
(6D 20 67 72 61 74 75 6C 75 6A 69 2E),
=(20 74 61 6B 20 6A 73 74 65 20 64 6F),

),
)

Y

(72 61 63 69 20 61 20 6A 61 20 56 61),

(6F 73 6C 69 20 61 7TA 20 73 65 6D 2C),
(63 65 74 6C 69 20 6D 6F 6A 69 20 62).

Diky ASCII tabulce dostaneme nasledujici vektory:

=(akalarskou_p),
=[Pokud_jste_d),

(m_gratuluji.),
(Ltak_jste_do),

(raci_a_ja_Va),

osli_az_sem

@i §¢ 5l 8 &l §l El

( 7)7
= )

cetli_moji_b

A pii vhodném preusporadani téchto vektoru dostavame text:

, Pokud_jste_dosli_az_sem, _tak_jste_docetli

_moyji_bakalarskou_praci_a_ja_Vam_gratulugi. “

Pozndmka: Jednd se o transpozi¢ni Sifru. Sifrovani bylo nédzorné ptredvedeno

v piikladu 1. Sifrovaci kli¢ je ve tvaru r = s ® Ug ® Ug ® Uy ® Uy ® Us @ U3.
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Zaver

Béhem realizace predklddané prace jsem nastudoval tii oblasti matematiky,
jez maji blizky vztah k teoretické informatice. Na zakladé téchto ziskanych te-
oretickych poznatku jsem vytvoril tuto praci. Nejdiive jsem vymyslel zadani
piikladt z kryptografie, poté z teorie grafi a nakonec z teorie kodovani. Béhem
vypoctu jsem bdadal ruzné po internetu a inspiroval se v odborné literature.
Priklady jsem postupné jeden po druhém po case vytesil. Pfi vypoctech jsem
velmi hojné vyuzival internetovou stranku https://matrixcalc.org/cs/| ktera
je velmi silnym nastrojem, napi. k vypoctu determinantu matice vyssiho radu.
Po dokonceni praktické casti této bakalarské prace jsem zacal zpracovavat teo-
retickou ¢ast, kterd by méla pomoct pochopit fesené ptiklady a postupy k jejich
feSeni. Po sepsani vSech poznamek jsem text vysazel v prostiedi IXTEX.

Vysledkem této bakalarské prace je Tesend sbirka tloh specialnich aplikaci
linearni algebry v teoretické informatice. Konkrétné tedy tloh z jiz zminéné teorie
grafi, teorie kédovani a kryptografie. Tato fesena sbirka iloh by méla prohlou-
bit znalosti vazeného ctendre z linedrni algebry ve tfech uvedenych oblastech.
Ptredpokladem pro porozuméni tomuto textu byla jistd zkuSenost ¢tenare s teo-

retickou informatikou a predevsim tedy s linedrni algebrou.
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Prilohy

Priloha 1: ASCII tabulka

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
0 00 hed 32 20 Space 64 40 B 96 60 -~
1 01 Start of heading 33 0al ! 65 41 A 97 61 a
2 D2 Startofted 34 22 = 66 42 B 93 62 b
3 03 Endofiext 35 23 ¥ 67 43 C 99 63 cC
4 04 Endoftransmi 36 24 3 68 44 D 100 64 d
5 05 Encuary 37 25 % 69 45 E 101 65 e
6 06 Acknowledge 38 26 ¢ 70 46 F 102 66 £
7 07 Audble bell 39 27 ° 71 4% G 103 67 g
8 08 Backspace 40 28 72 48 H 104 68 h
9 02 Horizontal tab 41 29 ) 73 49 1 105 69 i

10 OA Line feed 42 2ZA = T4 4A J 106 6A 3j
11 OB Verlicaltab 43 2ZB + 75 4B K 107 6B k
12 OC Form feed 44 ZC 76 4C L 108 6C 1
13 OD Carriage retumn 45 2D 77 4D H 109 6D m
14 OE Shift out 46 2ZE . 78 4E N 110 6E n
15 OF Shiftin 47 2F f 79 4F 0O 111 6F o
16 10 Databnk escape 48 30 O 80 50 P 112 70 p
17 11 Device control 1 49 31 1 81 SESaE O 113 71 g
18 12 Device control 2 50 32 2 82 52 R 114 72 «r
19 13 Device control 3 5138 3 g3 53 5 115 73 =
20 14 Dewice control 4 52 34 4 864 54 T 116 74 ¢
21 15 Neg. acknowiedge 23 g5 5 85 55 U 117 75 u
22 16 Synchronous ide 54 36 6 86 56 WV 118 76 W
23 17 Endfirans. block S5 7 87 57 ¥ 119 77 w
24 18 cCancsl 56 38 8 88 58 X 120 78 x
25 19 End of medum 57 39 9 89 59 ¥ 121 79 vy
26 1A Substiution 58 3A : 90 5A Z 122 A =
27 1B Escape 59 3B : 91 5B [ 123 7B {
28 1C Fie separator 60 3C < Oz BEaE 129 7FC |
29 1D Group separator 61 3D = 93 5D ] 125 7D )
30 1E Record separstor 62 3E > 94 5S5E * 126 TFE ~
31 1F Uni separator 63 3F 7 95 5F 127 7FF 0O
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Priloha 2: Tabulka Braillova pisma

Zakladni znaky abecedy

@ O
o O
& 0

® O
® O
i i

o0
O O
O O

€3

ooop
o o0 e|”

M

@ 00
® O e

W

X

Y

Zakladni s diakritikou

@ O

® o0
o O
ONN

o0
c e
c @

® O O
OB BN

ONN BN
® O @0

D

E

i

S

T

o0
® O
o0

® ® O
®@ O @

Y

Q ©
® O
G Q)

O O
o0
® O

O @ O
®@ O O

Qi Q
L BN
© 0

QO
® O
® O

£ 0
® O
e 0

o O
(ONN ]
LI

QO Q
e 0
(O

o O
o O
o0

O O
® o
e o

, Girka

! vykiitnik

? otaznik

: dvojtecka

3 strednik

( zacitek zdv.

) konec zdv.

+ plus

- minus

= rovnd se

® O
® O
(ONN

ONN
ONN
® O

0 ©
(BN
o0

Q 0O
ORN
® O

o0
o o0
NN

(ONN
(ONN
e

ONN
Ly i
O O

< mendi nei

> vEtsi nei

" uvozovky

* hvézditka

{ lomitko

| svisla édra

! apostrof
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Priloha 3: Tabulka Morseovy abecedy

| Pismeno | Kod | Pismeno || Kod

A - = S R
B - & o T -

C o e U aoa =
D = v e
E e W * = -
E o X STy s
G S Y B,
H L z - e
CH T 1 s s s
| o o 2 L
J S 3 * St -
K = 4 R
L S 5 o A A e
8 - 6 - % 5 s o
N s 7 —-—— e o
0 e 8 - - e
p & e 9 I
Q e i e
R * - Oddéleni znaku I
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