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4 Kryptografie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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Úvod

Ćılem této práce je vytvořit řešenou sb́ırku úloh speciálńıch aplikaćı lineárńı

algebry v teoretické informatice. Na prvńı pohled se může zdát, že teoretická

informatika a lineárńı algebra nemaj́ı nic společného, avšak opak je pravdou.

Názorným př́ıkladem je takový obrázek, (předpokládejme pro jednoduchost šedo-

tónový obrázek formátu .png) který je většinou v poč́ıtačové grafice reprezen-

tován dvourozměrnou matićı, kde každá hodnota reprezentuje právě jeden pixel

daného obrázku, respektive jeho barevnou složku. V této práci nebudeme zkou-

mat význam lineárńı algebry v poč́ıtačové grafice, ale pod́ıváme se, dle mého

názoru, na mnohem zaj́ımavěǰśı aplikace.

Tento text je rozdělen na dva celky, konkrétněji tedy na teoretickou část

a řešené př́ıklady. V teoretické části zavedeme algebraické struktury, nad kterými

posléze budeme definovat vektorové prostory, matice a determinanty. Dále se

v této části pod́ıváme na operaci modulo a také na množinu Zn. V závěru teore-

tické části si uděláme stručný úvod do teorie graf̊u, teorie kódováńı a kryptogra-

fie, jež maj́ı bĺızký vztah k lineárńı algebře. Tyto znalosti a poznatky využijeme

k řešeńı př́ıklad̊u právě z oné teorie graf̊u, teorie kódováńı a kryptografie v následu-

j́ıćım celku.

V této práci se poč́ıtá s t́ım, že vážený čtenář má jistou zkušenost s teoretickou

informatikou, a tedy předevš́ım s lineárńı algebrou. Předpokládá se např́ıklad, že

čtenář v́ı, jaké č́ıslo je prvoč́ıslo, co je to zobrazeńı (spec. tedy bijekce), zná po-

jem Gaussovy eliminace, umı́ řešit homogenńı i nehomogenńı soustavy lineárńıch

rovnic a daľśı. Tento text by měl sloužit k prohloubeńı znalost́ı lineárńı algebry,

konkrétněji tedy v oblasti teorie graf̊u, teorie kódováńı a kryptografie.
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Seznam použitých symbol̊u

V této práci budeme použ́ıvat následuj́ıćı symboly:

N množina přirozených č́ısel

Z množina celých č́ısel

Z[x] množina polynomů s celoč́ıselnými koeficienty

∅ množina prázdná

π Ludolfovo č́ıslo

∀x ∈M : V (x) pro každé x z množiny M plat́ı vlastnost (předpis) V

∃x ∈M : V (x) existuje alespoň jedno x z množiny M takové, že pro něj

plat́ı vlastnost (předpis) V

M ×N kartézský součin množin M a N

M → N množina M se zobraźı na množinu N

x 7→ y prvek x se zobraźı na prvek y

x ∈M prvek x lež́ı v množině M

M ⊆ N množina M je podmnožinou množiny N

|x| absolutńı hodnota z č́ısla x

min{x, y} minimálńı prvek z množiny {x, y}

sgn x znaménko č́ısla x (funkce signum)

x < y prvek x je ostře menš́ı než y

x > y prvek x je ostře větš́ı než y

x ≤ y prvek x je menš́ı nebo roven y

x ≥ y prvek x je větš́ı nebo roven y

V teoretické části tohoto textu budeme definovat daľśı matematické symboly.
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Teoretická část

9



1 Úvod do lineárńı algebry

1.1 Algebraické struktury

Definice 1.1.1. Je-li G neprázdná množina, potom binárńı operaćı na G ro-

zumı́me libovolné zobrazeńı ◦ : G×G→ G. [1]

Definice 1.1.2. Algebraickou strukturou G rozumı́me některou neprázdnou mno-

žinu G spolu s neprázdným systémem {fα;α ∈ I} n-árńıch algebraických operaćı

na G. (Č́ıslo n může být pro r̊uzné operace r̊uzné.) Znač́ıme G = (G, fα;α ∈ I). [1]

Definice 1.1.3. Je-li
”
◦“ binárńı operace na množině G 6= ∅, potom algebraická

struktura G = (G, ◦) se nazývá grupoid. Je-li operace
”
◦“ komutativńı, tj. plat́ı-li

∀a, b ∈ G : a ◦ b = b ◦ a,

pak se G nazývá komutativńı grupoid. [1]

Definice 1.1.4. Pologrupou rozumı́me libovolný grupoid G = (G, ◦), ve kterém

je operace
”
◦“ asociativńı, tj. plat́ı-li

∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c.

Komutativńı pologrupa se obvykle nazývá abelovská. [1]

Definice 1.1.5. Řekneme, že grupoid G = (G, ◦) má neutrálńı prvek, je-li prav-

divý výrok

∃n ∈ G∀a ∈ G : a ◦ n = a = n ◦ a.

Každý takový prvek n nazýváme neutrálńım prvkem grupoidu G. [1]
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Definice 1.1.6. Necht’ grupoid G = (G, ◦) má neutrálńı prvek n a necht’ a ∈ G.

Pak a∗ ∈ G nazýváme symetrickým prvkem k prvku a, plat́ı-li

a ◦ a∗ = n = a∗ ◦ a. [1]

Definice 1.1.7. Pologrupa G = (G, ◦) se nazývá grupa, obsahuje-li neutrálńı

prvek a existuje-li v ńı ke každému prvku symetrický prvek, tj. jsou-li pravdivé

výroky

∃n ∈ G∀a ∈ G : a ◦ n = a = n ◦ a,

∀a ∈ G∃a∗ ∈ G : a ◦ a∗ = n = a∗ ◦ a.

Komutativńı grupa se také nazývá abelovská. [1]

Definice 1.1.8. Okruhem nazýváme algebraickou strukturu M = (M,+, ·) se

dvěma binárńımi operacemi
”
+“ a

”
·“ takovou, že (M,+) je komutativńı grupa,

(M, ·) je pologrupa a operace násobeńı je zleva i zprava distributivńı vzhledem

k operaci sč́ıtańı, tj.

∀a, b, c ∈M : a · (b+ c) = a · b+ a · c,

∀a, b, c ∈M : (a+ b) · c = a · c+ b · c.

Je-li pologrupa (M, ·) komutativńı, pak se okruh nazývá komutativńı. [1]

Poznámka 1.1.1. V komutativńı grupě M = (M,+) budeme neutrálńı prvek

značit symbolem
”
o“ a nazývat jej nulovým prvkem okruhu M = (M,+, ·).

Definice 1.1.9. Prvek a 6= o okruhu M = (M,+, ·) se nazývá levý (pravý)

netriviálńı dělitel nuly, existuje-li b 6= o, b ∈M takový, že a · b = o (b · a = o). [1]

Definice 1.1.10. Řekneme, že a 6= o je netriviálńım dělitelem nuly, je-li a sou-

časně levým i pravým netriviálńım dělitelem nuly. [1]

Definice 1.1.11. Oborem integrity budeme rozumět každý okruh J = (J,+, ·),

který je komutativńı, obsahuje neutrálńı prvek (vzhledem k násobeńı) n 6= o a ve

kterém neexistuj́ı netriviálńı dělitelé nuly. [1]

Definice 1.1.12. Okruh T = (T,+, ·) se nazývá těleso, jestliže T obsahuje ale-

spoň dva navzájem r̊uzné prvky a je-li (T \ {o}, ·) grupou. Je-li (T, ·) komutativńı,

pak se T nazývá komutativńı těleso. [1]
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1.2 Vektorové prostory

Definice 1.2.1. Jsou-li A a B neprázdné množiny, potom levou vněǰśı operaćı

nad množinami A a B (v tomto pořad́ı) rozumı́me každé zobrazeńı ◦ : A×B → B.

(Jsou-li a ∈ A, b ∈ B, pak prvek ◦(a, b) budeme označovat a ◦ b). [1]

Definice 1.2.2. Necht’ (V,+) je komutativńı grupa (jej́ı prvky budeme označovat

např. #»u , #»v , nulový prvek #»o ), T č́ıselné těleso, ◦ : T × V → V levá vněǰśı ope-

race nad T a V . Potom systém V = (V,+, T , ◦) nazveme vektorový prostor nad

tělesem T , plat́ı-li:

1. ∀c ∈ T, #»u , #»v ∈ V : c ◦ ( #»u + #»v ) = c ◦ #»u + c ◦ #»v ,

2. ∀c, d ∈ T, #»u ∈ V : (c+ d) ◦ #»u = c ◦ #»u + d ◦ #»u ,

3. ∀c ∈ T, #»u ∈ V : (c · d) ◦ #»u = c ◦ (d ◦ #»u ),

4. ∀ #»u ∈ V : 1 ◦ #»u = #»u .

Prvky z komutativńı grupy (V,+) vektorového prostoru nazýváme vektory a č́ısla

z tělesa T skaláry. Vektorový prostor se někdy také nazývá lineárńı prostor. [1]

Poznámka 1.2.1. Operace
”
+“ v předchoźı definici bude symbolizovat sč́ıtańı

v grupě (V,+) a také sč́ıtáńı č́ısel v tělese T . Levá vněǰśı operace
”
◦“ bude

symbolizovat násobeńı vektor̊u skalárem. Mı́sto symbolu
”
◦“ budeme použ́ıvat

symbol
”
·“. [1]

Definice 1.2.3. Je-li V vektorový prostor nad č́ıselným tělesem T a jsou-li

#»v , #»u1, . . . ,
#»uk ∈ V , pak řekneme, že vektor #»v je lineárńı kombinaćı vektor̊u

#»u1, . . . ,
#»uk, existuj́ı-li č́ısla c1, . . . , ck ∈ T taková, že plat́ı

#»v =
k∑
i=1

ci · #»ui. [1]

Poznámka 1.2.2. Jsou-li všechny koeficienty ci, kde i = 1, 2 . . . , k v předchoźı

definici nulové, je lineárńı kombinace označována jako triviálńı. Je-li alespoň je-

den z koeficient̊u ci 6= 0, pak ř́ıkáme že lineárńı kombinace je netriviálńı.

Definice 1.2.4. Vektory #»u1, . . . ,
#»uk z vektorového prostoru V se nazývaj́ı lineárně

závislé, existuje-li alespoň jedna jejich netriviálńı kombinace, která je rovna nu-

lovému vektoru #»o (nazýváme tzv. nulová kombinace). V opačném př́ıpadě se
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vektory #»u1, . . . ,
#»uk nazývaj́ı lineárně nezávislé. [1]

Věta 1.2.1. Jsou-li #»u1, . . . ,
#»uk vektory z vektorového prostoru V , pak jsou tyto

vektory lineárně závislé právě tehdy, je-li alespoň jeden z těchto vektor̊u lineárńı

kombinaćı ostatńıch vektor̊u. [1]

Definice 1.2.5. Řekneme, že vektorový prostorW = (W,⊕, T ,⊗) je podprosto-

rem vektorového prostoru V = (V,+, T , ·), plat́ı-li:

1. W ⊆ V ,

2. ∀ #»u , #»v ∈ W : #»u ⊕ #»v = #»u + #»v ,

3. ∀c ∈ T, #»u ∈ W : c⊗ #»u = c · #»u . [1]

Poznámka 1.2.3. Vektorový podprostor se někdy také nazývá lineárńı pod-

prostor. Dle předchoźı definice lineárńı podprostor zachovává operace, neboli ji-

nak řečeno, lineárńı podprostor je uzavřený na sč́ıtańı v grupě (V,+) a také na

násobeńı vektor̊u skalárem.

Definice 1.2.6. Je-li M podmnožina vektorového prostoru V , pak lineárńım

obalem množiny M ve V rozumı́me pr̊unik všech podprostor̊u prostoru V obsa-

huj́ıćıch množinu M. Lineárńı obal množiny M budeme značit symbolem [M ]. [1]

Definice 1.2.7. Necht’ V je vektorový prostor nad č́ıselným tělesem T . Plat́ı-li

pro podmnožinu M 6= ∅ prostoru V , že [M ] = V , pak M se nazývá množina

generátor̊u prostoru V . Ř́ıkáme také, že množina M generuje prostor V . [1]

Definice 1.2.8. Řekneme, že vektorový prostor V je konečné dimenze, jestliže

existuje alespoň jedna jeho konečná množina generátor̊u. [1]

Definice 1.2.9. Báźı vektorového prostoru V konečné dimenze rozumı́me libo-

volnou lineárně nezávislou množinu { #»u1, . . . ,
#»uk} jeho generátor̊u. [1]

Věta (Steinitzova) 1.2.2. Necht’ { #»u1, . . . ,
# »un} je množina generátor̊u vekto-

rového prostoru V 6= { #»o } a #»v1, . . . ,
#»vk jsou lineárně nezávislé vektory z V . Po-

tom plat́ı, že k ≤ n a že po vhodném oč́ıslováńı vektor̊u #»u1, . . . ,
# »un je množina

{ #»v1, . . . ,
#»vk,

#      »uk+1, . . . ,
# »un} množinou generátor̊u prostoru V . [1]

Věta 1.2.3. Je-li V 6= { #»o } vektorový prostor konečné dimenze, potom každé

dvě jeho báze maj́ı stejný počet prvk̊u. [1]
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Definice 1.2.10. Je-li V 6= { #»o } vektorový prostor konečné dimenze, pak počet

prvk̊u jeho libovolné báze nazýváme dimenze prostoru V a znač́ıme dimV . Je-li

V = { #»o }, pak dimV = 0. [1]

1.3 Operace modulo

Definice 1.3.1. Řekneme, že celé č́ıslo a děĺı celé č́ıslo b (tento fakt znač́ıme

a | b), pokud existuje celé č́ıslo n takové, že b = n · a. [3]

Poznámka 1.3.1. Jestliže č́ıslo a děĺı č́ıslo b (v oboru celých č́ısel), pak č́ıslo

a nazýváme dělitelem č́ısla b. [3]

Definice 1.3.2. Prvoč́ıselným rozkladem kladného celého č́ısla označujeme zápis

pn1
1 · pn2

2 · . . . · pnr
r ,

kde r ≥ 1 je celé č́ıslo, p1 < p2 < . . . < pr jsou navzájem r̊uzná prvoč́ısla

a n1, n2, . . . , nr jsou kladná celá č́ısla. [3]

Věta 1.3.1. Pro každé celé č́ıslo x ≥ 2 existuje až na pořad́ı činitel̊u a asocio-

vanost jednoznačně prvoč́ıselný rozklad. [3]

Definice 1.3.3. Řekneme, že kladné celé č́ıslo d je nejvěťśım společným dělitelem

kladných celých č́ısel a, b (znač́ıme d = NSD(a, b)), pokud jsou splněny následuj́ıćı

dvě podmı́nky:

1. Č́ıslo d je společným dělitelem č́ısel a, b, tj. plat́ı d | a a zároveň d | b (v oboru

kladných celých č́ısel).

2. Č́ıslo d je největš́ım ze všech společných dělitel̊u č́ısel a, b, tj. plat́ı následuj́ıćı:

je-li c takové kladné celé č́ıslo, pro které plat́ı c | a a zároveň c | b, potom c | d. [3]

Věta 1.3.2. Necht’ a, b jsou libovolná celá č́ısla, b 6= 0. Pak existuj́ı jednoznačně

určená celá č́ısla q a r taková, že jsou splněny následuj́ıćı dvě podmı́nky:

1. Plat́ı rovnost a = q · b+ r.

2. Č́ıslo r splňuje nerovnost 0 ≤ r < |b|. [3]

Definice 1.3.4. Jednoznačně určené č́ıslo r z předchoźı věty se nazývá zbytek

po děleńı č́ısla a č́ıslem b a toto č́ıslo znač́ıme amod b. [3]
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Definice 1.3.5. Necht’ n ∈ N. Řekneme, že č́ısla a, b ∈ Z jsou kongruentńı mo-

dulo n, jestliže n | (a− b). Tuto skutečnost znač́ıme a ≡ b (modn). [4]

Poznámka 1.3.2. V předchoźı definici relace
”
být kongruentńı modulo“ znač́ı, že

č́ısla a, b maj́ı stejné zbytky po děleńı modulem n. Tento fakt zachycuje následuj́ıćı

věta. [4]

Věta 1.3.3. Necht’ n ∈ N. Pro č́ısla a, b ∈ Z jsou následuj́ıćı podmı́nky ekviva-

lentńı:

1. a ≡ b (modn),

2. existuje k ∈ Z takové, že a = b+ k · n,

3. amodn = bmodn, tj. jsou si rovny zbytky po děleńı č́ıslem n. [4]

Věta 1.3.4. Necht’ n ∈ N. Pak plat́ı:

1. Pro každé c ∈ Z je c ≡ c (modn),

2. Necht’ a ∈ Z. Potom plat́ı, že a ≡ 0 (modn) právě tehdy, když n děĺı a. [4]

Definice 1.3.6. Necht’ n ∈ N. Symbolem Zn znač́ıme množinu Zn = {0, 1, . . . ,

n− 1}. Pro všechna a, b ∈ Zn definujeme operace

a⊕ b = (a+ b)modn,

a� b = (a · b)modn. [4]

Poznámka 1.3.3. Takto zavedenou množinu někdy také nazýváme množinou

zbytkových tř́ıd. V celém tomto textu (pokud nebude řečeno jinak) budeme pra-

covat s množinou Zp, kde p je prvoč́ıslo, č́ımž se vyhneme jistým problémům,

nebot’ množina Zp je tělesem. Symbolem Zkp budeme rozumět množinu všech

uspořádaných k-tic nad Zp. [4]

1.4 Matice a jejich základńı vlastnosti

Definice 1.4.1. Necht’ T = (T,+, ·) je č́ıselné těleso, m,n ∈ N, aij ∈ T, i =

1, 2, . . . ,m, j = 1, 2, . . . n. Potom schéma
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A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


se nazývá matice typu m×n nad T . Tuto maticiA budeme zapisovat ve zkráceném

tvaru A = (aij) typu m × n. Je-li r = min{m,n}, pak řekneme, že prvky

a11, a22, . . . , arr tvoř́ı hlavńı diagonálu matice A. [1]

Poznámka 1.4.1. Pokud matice bude typu n×n nad T , budeme hovořit o tzv.

čtvercové matici řádu n. Předchoźı definice zavád́ı matice nad č́ıselným tělesem.

V tomto textu se objev́ı i matice, které mı́sto č́ısel budou mı́t znaky a symboly.

S takovými maticemi nebudeme dělat žádné operace.

Definice 1.4.2. Matici O = (oij) typu m× n nazýváme nulovou matićı, plat́ı-li

oij = 0 pro každé i = 1, 2, . . . ,m, j = 1, 2, . . . n. [1]

Definice 1.4.3. Čtvercovou matici E = (eij) řádu n nazýváme jednotkovou ma-

tićı, jestliže všechny prvky na jej́ı hlavńı diagonále jsou rovny 1 a všechny prvky

mimo hlavńı diagonálu jsou rovny 0.

Definice 1.4.4. Je-li A = (aij) matice typu m × n, potom matićı transpono-

vanou k matici A nazýváme matici AT = (aji) typu n × m, která vznikne z A

vzájemnou záměnou řádk̊u a sloupc̊u. [1]

Definice 1.4.5. Necht’ A = (aij) je čtvercová matice řádu n. Symetrickou matićı

k matici A rozumı́me každou matici, která splňuje rovnost A = AT . [1]

Definice 1.4.6. Necht’ A = (aij), B = (bij) jsou matice typu m × n nad T .

Potom součtem matic A a B rozumı́me matici A+B = (cij) typu m× n nad T

takovou, že cij = aij + bij pro každé i = 1, 2, . . . ,m, j = 1, 2, . . . , n. [1]

Definice 1.4.7. Necht’ A = (aij) je matice typu m × n nad T a necht’ c ∈ T .

Potom součinem skaláru c a matice A rozumı́me matici c ·A = (c ·aij) typu m×n

nad T . [1]

Definice 1.4.8. Necht’ A = (aij) je matice typu m× n nad T , B = (bjk) je ma-

tice typu n× p nad T . Potom součinem matic A a B (v tomto pořad́ı) rozumı́me

matici A ·B = (cik) typu m× p nad T takovou, že
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cik =
n∑
j=1

aij · bjk,

pro každé i = 1, 2, . . . ,m, k = 1, 2, . . . , p. [1]

Definice 1.4.9. Elementárńımi řádkovými transformacemi matice A nazýváme

následuj́ıćı operace:

1. výměna libovolných dvou řádk̊u v A,

2. vynásobeńı některého řádku v A prvkem z T r̊uzným od nuly,

3. přičteńı libovolného násobku některého řádku z A k jinému řádku v A. [1]

Definice 1.4.10. Jsou-li A,B matice typu m× n nad T , pak řekneme, že ma-

tice B je řádkově ekvivalentńı s matićı A (znač́ıme A ∼ B), může-li B vzniknout

z A pomoćı konečného počtu elementárńıch řádkových transformaćı. [1]

Definice 1.4.11. Hodnost́ı matice A = (aij) typu m× n nad T rozumı́me č́ıslo

h(A), které je rovno maximálńımu počtu lineárně nezávislých řádk̊u matice A. [1]

Věta 1.4.1. Řádkově ekvivalentńı matice maj́ı stejnou hodnost. [1]

Definice 1.4.12. Čtvercovou matici A = (aij) řádu n nazveme regulárńı, jestliže

je jej́ı hodnost h(A) = n. V opačném př́ıpadě nazveme matici A singulárńı.

Definice 1.4.13. Pro každé n ∈ N budeme (řádkovým) n-rozměrným aritme-

tickým vektorovým prostorem nad T (znač́ıme T n) rozumět komutativńı grupu

(M1×n(T ),+) všech matic typu 1× n nad T uvažovanou spolu s násobeńım ma-

tic z M1×n(T ) skaláry z T . Každou matici z M1×n(T ) pak nazveme n-rozměrný

(řádkový) aritmetický vektor nad T . [1]

Definice 1.4.14. Je-li #»u = (u1, . . . , un) n-rozměrný aritmetický vektorový vek-

tor, pak prvky u1, . . . , un ∈ T nazýváme souřadnice vektoru #»u . [1]

Poznámka 1.4.2. V tomto textu budeme uvažovat řádkové vektory, tj. vektory,

které maj́ı souřadnice zapsány v řádku. Vektory, které budou mı́t souřadnice

zapsány ve sloupci, budeme nazývat vektory sloupcové. Transponovaný vektor

k řádkovému vektoru je vektor sloupcový a naopak.
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1.5 Pořad́ı, permutace, determinant

Definice 1.5.1. Je-li A = {a1, a2, . . . , an}, kde n ≥ 1, konečná množina, potom

pořad́ım množiny A nazveme libovolnou posloupnost

π = (ak1 , ak2 , . . . , akn)

prvk̊u z A takovou, že každý prvek z množiny A se v π vyskytuje právě jednou. [1]

Definice 1.5.2. Permutaćı P na množině A rozumı́me každou bijekci A na A.

Je-li P permutace na A, pak ji budeme psát ve tvaru schématu

P =

(
i1 i2 . . . in

P (i1) P (i2) . . . P (in)

)
. [1]

Definice 1.5.3. Je-li π = (k1, k2, . . . , kn) pořad́ı, pak řekneme, že prvky ki a kj

tvoř́ı v pořad́ı π inverzi, plat́ı-li i < j a ki > kj. [1]

Poznámka 1.5.1. Počet inverźı pořad́ı π budeme v tomto textu označovat

symbolem [π]. [1]

Definice 1.5.4. Znaménkem pořad́ı π rozumı́me č́ıslo sgn π = (−1)[π]. [1]

Definice 1.5.5. Znaménkem permutace

P =

(
i1 i2 . . . in
k1 k2 . . . kn.

)
=

(
π1
π2

)
rozumı́me č́ıslo sgnP , které se rovná +1, plat́ı-li sgn π1 = sgn π2, a rovná se −1,

plat́ı li sgn π1 = −sgn π2. [1]

Definice 1.5.6. Necht’ A = (aij) je čtvercová matice řádu n nad č́ıselným

tělesem T . Determinantem matice A rozumı́me č́ıslo detA z tělesa T takové, že

detA =
∑
P

sgnP · a1k1 · a2k2 · . . . · ankn ,

kde sč́ıtáme přes všechny permutace

P =

(
1 2 . . . n
k1 k2 . . . kn.

)
=

(
1 2 . . . n

P (1) P (2) . . . P (n)

)
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množiny {1, 2, . . . , n}. Každý ze součin̊u a1k1 · a2k2 · . . . · ankn nazýváme člen de-

terminantu detA. [1]

Věta 1.5.1. Má-li čtvercová matice A řádu n nad T v některém řádku samé

nuly, pak detA = 0. [1]

Věta 1.5.2. Má-li čtvercová matice A řádu n nad T všechny prvky pod hlavńı

diagonálou rovny nule, potom detA je roven součinu a11, a22, . . . , ann prvk̊u na

hlavńı diagonále. [1]

Definice 1.5.7. Necht’ A = (aij) je matice typu m×n nad T . Potom každou ma-

tici, která vznikne z matice A vynecháńım některých řádku a některých sloupc̊u,

nazýváme submatice matice A. Je-li submatice matice A čtvercová, potom jej́ı

determinant nazýváme subdeterminant matice A. [1]

Definice 1.5.8. Je-li A = (aij) čtvercová matice řádu n nad T , potom subde-

terminant submatice Aij řádu (n− 1) vzniklé vynecháńım i-tého řádku a j-tého

sloupce A nazýváme minor matice A př́ıslušný k prvku aij a znač́ıme jej Mij.

Algebraickým doplňkem prvku aij rozumı́me prvek Aij = (−1)i+j · Mij. [1]

Věta (Laplaceova) 1.5.3. Necht’ A = (aik) je čtvercová matice řádu n nad T .

Potom pro každé i = 1, 2, . . . , n plat́ı

n∑
k=1

aik · Aik = detA,

a pro každé i, j = 1, 2, . . . , n, i 6= j plat́ı

n∑
k=1

aik · Ajk = 0. [1]

Definice 1.5.9. Necht’ A = (aij) je matice řádu n nad T . Inverzńı matićı k ma-

tici A, budeme rozumět matici A−1, pro kterou plat́ı A · A−1 = E = A−1 · A.

Matice A, ke které existuje inverzńı matice A−1, se nazývá invertibilńı.

Věta 1.5.4. Je-li A = (aij) čtvercová matice řádu n nad T , potom k ńı existuje

inverzńı matice A−1 tehdy a jen tehdy, jeli detA 6= 0. [1]

Poznámka 1.5.2. Inverzńı matici A−1 nalezneme tak, že vytvoř́ıme matici

(A |E), kterou se snaž́ıme elementárńımi řádkovými transformacemi dostat do
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tvaru (E |A−1). Tento postup plat́ı pro všechny matice, které splňuj́ı kritérium

předchoźı věty, tedy pro všechny regulárńı matice.

1.6 Lineárńı algebra nad množinou Zn

Poznámka 1.6.1. Pojmy z lineárńı algebry, které byly zavedeny v předchoźıch

kapitolách, jako např. vektory, matice, determinanty a daľśı, se daj́ı analogicky

jako pro reálná č́ısla zavést i pro množinu Zn. Sč́ıtáńı a násobeńı na této množině

jsme si definovali v kapitole 1.3. Rozd́ıl mezi Z a Zn nastává v př́ıpadě, kdy chceme

nalézt inverzńı matici A−1. Tuto skutečnost zachycuje následuj́ıćı věta. [4]

Věta 1.6.1. Ke čtvercové matici A nad Zn existuje inverzńı matice A−1 právě

tehdy, když determinant matice A je invertibilńı prvek Zn. Pak

A−1 = (detA)−1 · (Aij)T ,

kde (Aij) je matice algebraických doplňk̊u matice A. [4]

Definice 1.6.1. Necht’ A = (aij), B = (bij) jsou matice typu m × n nad T

a necht’ n ∈ N. Řekneme, že matice A a B jsou kongruentńı modulo n, jestliže

pro každý prvek aij matice A a každý prvek bij matice B plat́ı n | (aij − bij) pro

všechna i = 1, 2, . . . ,m, j = 1, 2, . . . n. Tento fakt znač́ıme A ≡n B. [4]

Poznámka 1.6.2. Problém v Zn nastává, pokud chceme nalézt hodnost h(A)

maticeA. Dá se dokázat, že v Zn neplat́ı rovnost h(AT ) = h(A). Tomuto problému

se v tomto textu vyhneme tak, že budeme pracovat nad množinou Zp, kde p je

prvoč́ıslo (pokud nebude řečeno jinak), jak již bylo zmı́něno v kapitole 1.3. Tato

množina je tělesem, d́ıky čemuž se vyhneme jistým nepř́ıjemnostem při hledáńı

hodnosti h(A) matice A. Dále bude možné d́ıky tomuto tělesu hledat inverzńı

matici převodem popsaným na konci kapitoly 1.5. [4]

Poznámka 1.6.3. Daľśı nepř́ıjemnost́ı v Zn může být Gaussova eliminačńı me-

toda. Tato metoda v Zn přestává být spolehlivým nástrojem pro výpočet deter-

minantu či řešeńı soustav lineárńıch rovnic. Vzhledem k faktu, že v tomto textu

jsme Gaussovu eliminačńı metodu ani soustavy lineárńıch rovnic nezaváděli, neńı

nutné tuto skutečnost řešit, ale je dobré ji alespoň zmı́nit. [4]
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2 Teorie graf̊u

2.1 Stručný úvod do teorie graf̊u

Teorie graf̊u nám dává v matematice a informatice velmi užitečnou a prak-

tickou pomůcku k řešeńı nejr̊uzněǰśıch druh̊u problémů. Graf je poměrně obecný

pojem a vyskytuje se v r̊uzných významech. Zde bude tento pojem představovat

grafický zp̊usob vyjádřeńı vztah̊u mezi nějakými objekty. Objekty budou v grafu

reprezentovány vrcholy. Vztahy budou v grafu reprezentovány hranami.

Definice 2.1.1. Jednoduchý graf G je uspořádaná dvojice (V (G), E(G)), kde

V (G) je neprázdná množina vrchol̊u a E(G) je nějaká množina dvouprvkových

podmnožin množiny V (G). Prvk̊um E(G) ř́ıkáme hrany. [5]

Poznámka 2.1.1. Pokud z kontextu bude zřejmé, o který graf se jedná, budeme

pro množinu vrchol̊u použ́ıvat symbol V a pro množinu hran symbol E. Symbolem

|V (G)| budeme rozumět počet vrchol̊u a symbolem |E(G)| počet hran grafu G.

Vrcholy budeme značit symbolem vi a hrany symbolem ei, přičemž ei = {vi, vj}.

V tomto textu budeme pracovat výhradně s konečnými grafy. Vrcholy vi a vj

nazýváme koncové vrcholy hrany ei. Je-li vrchol vi koncovým vrcholem hrany ei,

ř́ıkáme, že vrchol vi je incidentńı s hranou ei. Násobnou hranou budeme rozumět

v́ıce hran spojuj́ıćıch stejné vrcholy. [5]

Poznámka 2.1.2. Takto zavedená definice jednoduchého grafu nedovoluje, aby

oba koncové vrcholy hrany byly stejné, protože by se nejednalo o dvouprvkovou

podmnožinu množiny V (G). Takovým hranám se ř́ıká smyčky. V celém tomto

textu budeme předpokládat, že graf G neobsahuje smyčky. Dále si z definice

můžeme všimnout, že graf G nemůže být prázdný. Graf G s množinou vrchol̊u

V (G) = {v1, . . . , vn}, pro n ≥ 3 a množinou hran E(G) = {{v1, v2}, {v2, v3}, . . . ,
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{vn−1, vn}, {vn, v1}} se nazývá cyklus (někdy také kružnice). [5]

Definice 2.1.2. Stupeň vrcholu vi je počet hran, se kterými je vrchol vi inci-

dentńı. Stupeň vrcholu budeme značit symbolem deg(vi). [5]

Definice 2.1.3. Orientovaným grafem rozumı́me uspořádanou dvojici G = (V,

E), kde V (G) je množina vrchol̊u a E(G) ⊆ V (G) × V (G) je množina oriento-

vaných hran. [5]

Poznámka 2.1.3. Každý graf G, na kterém neńı zavedená orientace se nazývá

neorientovaný graf G. Orientace je zde chápaná jako směr hrany ei od vrcholu vi

do vrcholu vj.

Definice 2.1.4. Řekneme, že graf G je ohodnocený, jestliže jsou hranám nebo

vrchol̊um přǐrazena nenulová č́ısla. [5]

Definice 2.1.5. Mějme dán graf G = (V,E). Řekneme, že graf H = (V ′, E ′) je

podgrafem grafu G, jestliže V ′ ⊆ V a současně E ′ ⊆ E. [5]

Poznámka 2.1.4. Speciálńım př́ıpadem podgrafu je podgraf, který obsahuje

všechny vrcholy p̊uvodńıho grafu (tj. V = V ′). Takovému podgrafu ř́ıkáme faktor. [5]

Definice 2.1.6. Sled v grafu G je taková posloupnost vrchol̊u a hran

(vo, {v0, v1}, v1, {v1, v2}, v2, . . . , {vn−1, vn}, vn),

že hrana ei = {vi−1, vi}má koncové vrcholy vi−1 a vi pro všechna i = 1, 2, . . . , n. [5]

Poznámka 2.1.5. Sled uvedený v předchoźı definici nazýváme (vo, vn)-sled. [5]

Definice 2.1.7. Graf je souvislý, jestliže pro každou dvojici vrchol̊u vi, vj ∈ V (G)

existuje (vi, vj)-sled. [5]

Definice 2.1.8. Graf se nazývá acyklický, jestliže žádný jeho podgraf neńı cyklus.

Souvislý acyklický graf se nazývá strom. [5]

Definice 2.1.9. Faktor grafu, který je stromem, se nazývá kostrou grafu. [5]

Definice 2.1.10. Necht’ G je souvislý graf spolu s ohodnoceńım hran c, tj. pro

každou hranu ei ∈ E(G) je dáno č́ıslo c(ei) (č́ıslo c(ei) nazýváme cenou hrany ei).

Minimálńı kostra grafu G = (V,E) je taková kostra grafu K = (V,E ′), že∑
ei∈E′ c(ei) je nejmenš́ı možná (mezi všemi kostrami grafu G). [8]

Definice 2.1.11. Matice incidence I(G) = (gij) orientovaného grafu G = (V,E),

kde |V (G)| = m a |E(G)| = n je matice typu m× n definovaná vztahem
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gij =


+1 pokud hrana ej vycháźı z vrcholu vi,
−1 pokud hrana ej vcháźı do vrcholu vi,

0 jinak. [6]

Definice 2.1.12. Matice sousednosti S(G) = (sij) orientovaného grafu G =

(V,E), kde |V (G)| = n je čtvercová matice řádu n definována vztahem

sij =

{
1 jestliže ei ∈ E(G)
0 jinak.

Pro neorientovaný graf plat́ı, že matice sousednosti S(G) je symetrická. [6]

Definice 2.1.13. Laplaceova matice sousednosti L(G) = (lij) neorientovaného

grafu G = (V,E) s množinou vrchol̊u V (G) = {v1, v2, . . . , vn}, kde G je bez

smyček a násobných hran je čtvercová matice řádu n definovaná vztahem

lij =


deg(vi) pokud i = j,
−1 pokud {vi, vj} ∈ E(G),

0 jinak. [6]

Definice 2.1.14. Počet koster neorientovaného grafu G = (V,E) je roven de-

terminantu matice L′(G), která vznikne vypuštěńım posledńıho řádku a sloupce

z matice L(G). [6]

2.2 Grafové algoritmy

Kruskal̊uv algoritmus

Kruskal̊uv algoritmus je jeden z algoritmů využ́ıvaných k nalezeńı minimálńı

kostry grafu.

Definice 2.2.1. Mějme dán souvislý ohodnocený graf G s nezáporným ohodno-

ceńım hran c. Počet hran grafu G označ́ıme m.

1. Seřad́ıme hrany grafu G do neklesaj́ıćı posloupnosti podle jejich ohodnoceńı:

c(e1) ≤ c(e2) ≤ . . . ≤ c(em).
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2. Začneme s prázdnou množinou hran E(G) = ∅ pro kostru.

3. Pro i = 1, 2, . . . ,m vezmeme hranu ei a pokud přidáńım této hrany nevznikne

cyklus (v grafu s množinou hran E(G) ∪ {ei}), tak přidáme hranu ei do E(G).

Jinak hranu ei ”
zahod́ıme“.

4. Pro zpracovańı všech hran obsahuje E(G) hrany minimálńı kostry ohodno-

ceného grafu G. [5]

Poznámka 2.2.1. Jednotlivé kroky Kruskalova algoritmu budeme značit sym-

bolem  .

Floyd̊uv–Warshall̊uv algoritmus

Floyd̊uv–Warshall̊uv algoritmus slouž́ı předevš́ım k vyhledáńı vzdálenost́ı (vzdá-

lenost = délka minimálńı cesty) v ohodnocených grafech. Algoritmus je založen na

porovnáńı hodnot př́ımých a nepř́ımých vzdálenost́ı. Využ́ıvá se toho, že hrana

{vi, vj} patř́ı do minimálńı cesty tehdy, pokud nevede minimálńı cesta jinudy.

Zapsáno matematicky:

c({vi, vj}) > c({vi, vk}) + c({vk, vj}). [2]

Ukázáno schématicky:

Obrázek 1: Schéma Floydova-Warshallova algoritmu

Definice 2.2.2. Mějme dán souvislý ohodnocený graf G s nezáporným ohodno-

ceńım hran c. Počet hran grafu G označ́ıme m.

1. Sestav́ıme matici př́ımých vzdálenost́ı F , přičemž pro prvky fij této matice

plat́ı:

a) fij = 0 pokud i = j,

b) fij = c(ei) pro i = 1, 2, . . . ,m pokud i 6= j a hrana spojuj́ıćı vrcholy vi, vj

existuje,
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c) fij =∞ pokud i 6= j a hrana spojuj́ıćı vrcholy vi, vj neexistuje.

2. Zavedeme pomocnou proměnnou k a polož́ıme k = 1. Tato proměnná předsta-

vuje index vrcholu, přes který provád́ıme přepočet.

3. Provedeme přepočet jednotlivých prvk̊u fij matice F podle pravidla fij =

min{fij, fik + fkj}, přičemž nepřepoč́ıtáváme prvky matice, pro které plat́ı i = j

(hlavńı diagonála matice), prvky, pro které plat́ı i, j = k (lež́ı v řádku či sloupci

s indexem k), a prvky i 6= k a j 6= k, pro které fik =∞ a fkj =∞.

4. Pokud k < n (n je počet vrchol̊u grafu G), potom polož́ıme k = k+1 a vraćıme

se zpět ke kroku 3. Je-li k = n je výpočet ukončen a posledńı źıskaná matice je

hledanou matićı vzdálenost́ı. [2]

Poznámka 2.2.2. Jednotlivé kroky Floydova-Warshallova algoritmu budeme

značit symbolem  .

Algoritmus prohledáváńı do š́ıřky

Občas tento algoritmus můžeme zahlédnout pod anglickým názvem
”
Breadth-

first search“ (zkráceně BFS). Algoritmus prohledáváńı do š́ı̌rky je grafový algo-

ritmus, který postupně procháźı všechny vrcholy v daném maximálńım souvislém

podgrafu. Tento algoritmus postupuje systematickým prohledáváńım grafu přes

všechny vrcholy. Nepouž́ıvá při svém prohledáváńı žádnou heuristickou analýzu.

Pouze procháźı všechny vrcholy a pro každý vrchol projde jejich všechny následov-

ńıky. Přitom si poznamenává předch̊udce jednotlivých vrchol̊u a t́ım je poté vy-

tvořen strom nejkratš́ıch cest k jednotlivým vrchol̊um z kořene (vrchol, ve kterém

jsme zač́ınali). [11]
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3 Teorie kódováńı

3.1 Stručný úvod do teorie kódováńı

Teorie kódováńı se zabývá nejen konstrukcemi kód̊u, ale i studiem jejich

vlastnost́ı. Úlohou teorie kódováńı je tvorba postup̊u a metod, které nám zajist́ı

bezpečný přenos zpráv komunikačńım systémem. Teorie kódováńı se děĺı na mi-

nimálńı kódováńı (komprese dat), na bezpečnostńı kódováńı (samoopravné kódy)

a na kryptografické kódováńı (kryptografie). V tomto textu se nebudeme věnovat

kompresi dat, ale zaměř́ıme se na samoopravné kódy a kryptografii (v daľśı kapi-

tole). Nyńı si připomeňme množinu zbytkových tř́ıd Z2.

Definice 3.1.1. Těleso Z2 je dvouprvková množina {0, 1}, na které je definováno

sč́ıtáńı + : Z2 × Z2 → Z2 a násobeńı · : Z2 × Z2 → Z2 takto:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Tedy 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0, 0 · 0 = 0 · 1 = 1 · 0 = 0, 1 · 1 = 1. [7]

Definice 3.1.2. Necht’ A je konečná množina (tzv. abeceda). Pak slovo je li-

bovolná konečná posloupnost prvk̊u z A. Kódováńı v obecném smyslu zahrnuje

algoritmus, kterým informace převád́ıme do posloupnosti slov (tzv. kodér) a algo-

ritmus, kterým zpětně z těchto slov źıskáváme p̊uvodńı informaci (tzv. dekodér).

Slova, která vytvář́ı kodér, se nazývaj́ı kódová slova. Množina všech kódových

slov se nazývá kód. Je-li kód množinou slov stejné délky (každé kódové slovo má

stejný počet znak̊u abecedy), mluv́ıme o tzv. blokovém kódu. Blokový kód délky n

znač́ı, že všechna kódová slova maj́ı n znak̊u abecedy. [7]

Poznámka 3.1.1. Algoritmus je přesný postup, kterým se řeš́ı daný typ úlohy.
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Definice 3.1.3. Řekneme, že kód K je binárńı, jestliže všechna jeho slova jsou

zapsána ve dvojkové soustavě (tj. všechna slova patř́ı do Zn2 ). [8]

Definice 3.1.4. Binárńı blokový kód K délky n je lineárńı, pokud kód K tvoř́ı

lineárńı podprostor lineárńıho prostoru Zn2 . Jestliže dimenzi tohoto podprostoru

označ́ıme k, pak mluv́ıme o lineárńım (n, k) kódu. [7]

Definice 3.1.5. Pro vektory (slova) #»v = (v0v1 . . . vn−1),
#»w = (w0w1 . . . wn−1)

nad Zn2 definujeme operaci sč́ıtańı následovně: #»v + #»w = (v0+w0 v1+w1 . . . vn−1

+ wn−1) mod 2 a operaci násobeńı skalárem c ∈ T následovně: c · #»v = (c · v0
c · v1 . . . c · vn−1) mod 2.

Poznámka 3.1.2. Pro vektor (slovo) #»v = (v0v1 . . . vn−1) nad Zn2 plat́ı následuj́ıćı

rovnosti: 1 · #»v = #»v , 0 · #»v = #»o , #»v · #»v = #»o a #»v = − #»v .

Definice 3.1.6. Opakovaćı kód K délky n je kód složený ze všech slov tvaru

#»v = (v0v1 . . . vn−1), kde vi = 1 nebo vi = 0 pro všechna i = 0, 1, . . . , (n− 1). [8]

Definice 3.1.7. Generuj́ıćı matice G lineárńıho (n, k) kódu K je po řádćıch

zapsaná báze tohoto kódu. Kontrolńı matice lineárńıho (n, k) kódu K je taková

matice H s lineárně nezávislými řádky, pro kterou plat́ı: množina řešeńı homo-

genńı soustavy H · ( #»x )T = #»o je rovna kódu K. [7]

Definice 3.1.8. Je-li počet prvk̊u některé báze kódu K roven k, pak ř́ıkáme, že

kód K má k informačńıch bit̊u a (n− k) kontrolńıch bit̊u. [8]

Věta 3.1.1. Necht’ G je generuj́ıćı matice a H kontrolńı matice lineárńıho (n, k)

kódu. Pak H · GT = O1 a také G ·HT = O2, kde O1 je nulová matice s (n − k)

řádky a k sloupci a plat́ı O2 = OT
1 . [7]

Poznámka 3.1.3. Matice G je často ve tvaru G = (E |C), kde E je jednotková

matice řádu n. Matice H je pak často ve tvaru H = (CT |E), kde E je jednotková

matice řádu (k − n). Nav́ıc plat́ı, že matice H je odvozena z matice G. [7]

Definice 3.1.9. Kód K nazveme systematický, právě když existuje generuj́ıćı

matice G lineárńıho (n, k) kódu, která je ve tvaru G = (E |C), kde E je jednot-

ková matice řádu n. [7]
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3.2 Cyklické kódy

Definice 3.2.1. Cyklický (n, k) kód K délky n nad Zn2 je lineárńı (n, k) kód,

který je uzavřený na cyklický posun ṕısmen (prvk̊u z abecedy). Pro každé #»v ∈ Zn2
plat́ı: Je-li #»v = (v0v1 . . . vn−1) ∈ K, pak c( #»v ) = (v1 . . . vn−1v0) ∈ K. [8]

Věta 3.2.1. Opakovaćı kód délky n nad Zn2 je cyklický. [8]

Poznámka 3.2.1. Cyklický (n, k) kód je uzavřený na cyklické posuny ṕısmen

doleva i doprava, nebot’ posun o i mı́st doleva je vlastně posunem o (n− i) mı́st

doprava, pro 0 ≤ i ≤ (n− 1). [8]

Poznámka 3.2.2. Pro popis cyklických posun̊u slov se ukazuje výhodné praco-

vat s n-ticemi znak̊u jako s polynomy. Proto zavád́ıme zobrazeńı

#»v = (v0v1 . . . vn−1) 7→ v(x) = v0 + (v1 · x) + . . .+ (vn−1 · xn−1).

Cyklický posun je pak realizován vynásobeńım polynomu v(x) s proměnnou x

s t́ım, že xn = 1 (nebot’ pracujeme nad Zn2 ), přičemž x 6= 0. Tedy

x · v(x) = (v0 · x) + (v1 · x2) + . . .+ (vn−2 · xn−1) + (vn−1 · xn)

= vn−1 + (v0 · x) + (v1 · x2) + . . .+ (vn−2 · xn−1). [8]

Definice 3.2.2. Každý cyklický (n, k) kód K obsahuj́ıćı v́ıce než jedno slovo

obsahuje právě jeden (až na nenulový násobek) polynom g(x) stupně (n − k).

Polynom g(x) se nazývá generuj́ıćı polynom kódu K a má následuj́ıćı vlastnosti:

1. Kód K se skládá právě ze všech násobk̊u polynomu g(x).

2. Polynomy g(x), x · g(x), x2 · g(x), . . . , xk−1 · g(x) tvoř́ı bázi kódu K.

3. Polynom g(x) děĺı polynom xn − 1 beze zbytku v okruhu Zp[x]. [8]

Poznámka 3.2.3. Každý cyklický (n, k) kód K je jednoznačně určen svým ge-

neruj́ıćım polynomem. [8]

Poznámka 3.2.4. Generuj́ıćı polynom cyklického (n, k) kódu K je polynom

nejmenš́ıho stupně mezi všemi nenulovými polynomy cyklického (n, k) kódu K. [8]

Definice 3.2.3. Necht’ je dán generuj́ıćı polynom g(x) cyklického (n, k) kódu K.

Pak kódováńı generované polynomem prob́ıhá takto: máme-li dány informačńı bity
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(v0v1 . . . vk−1). Vytvoř́ıme polynom v(x) = v0 + (v1 · x) + . . .+ (vk−1 · xk−1). Pak

v(x) 7→ v(x) · g(x).

Jestliže polynom v(x) ·g(x) je roven u0+(u1 ·x)+ . . .+(un−1 ·xn−1), pak kódováńı

bude

(v0v1 . . . vk−1) 7→ (u0u1 . . . un−1). [8]

3.3 Hamming̊uv kód, rozš́ı̌rený Hamming̊uv kód

Poznámka 3.3.1. Existuj́ı lineárńı (n, k) kódy, které opravuj́ı některá přijatá

slova lǐśıćı se pouze v jednom znaku od kódového slova (nazýváme tzv. jednoduchá

chyba) při přenosu dat. Aby lineárńı (n, k) kód opravoval všechny jednoduché

chyby ve slově, je nutné, aby počet sloupc̊u byl n = 2c − 1, kde c = n− k (c je

v tomto př́ıpadě počet řádk̊u) a dále je nutné, aby kontrolńı matice tohoto kódu

neměla žádný sloupec nulový a všechny sloupce byly od sebe navzájem r̊uzné.

Z toho hned vyplývá jediný možný tvar kontrolńı matice (až na pořad́ı sloupc̊u).

Pro c = 2, 3, 4, . . . dostáváme tedy lineárńı (3, 1), (7, 4), (15, 11), . . . kódy. [7]

Definice 3.3.1. Pro přirozené č́ıslo c ≥ 2 definujeme Hamming̊uv kód délky

n = 2c − 1, kde c = n − k jako lineárńı (n, k) kód, jestliže má kontrolńı ma-

tici H, jej́ıž sloupce jsou všechna nenulová slova dané délky a žádné z nich se

neopakuje. [9]

Poznámka 3.3.2. V jednotlivých sloupćıch kontrolńı matice H Hammingova

kódu jsou všechna č́ısla 1, 2, 3, . . . , c zapsána ve dvojkové soustavě. [7]

Věta 3.3.1. Hamming̊uv kód délky n = 2c − 1 dokáže opravit jednu chybu. [9]

Věta 3.3.2. Necht’ G je generuj́ıćı matice Hammingova (7, 4) kódu

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 ,
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pak kontrolńı matice H Hammingova (7, 4) kódu je ve tvaru

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 ∼
0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

 . [9]

Poznámka 3.3.3. Kontrola parity je metoda, která spoč́ıvá v tom, že k přenáše-

né informaci přidáme daľśı bit, tzv. paritńı bit. Hodnotu tohoto bitu urč́ıme tak,

že v nově vzniklém slově bude vždy dohromady bud’ sudý počet jedniček (tzv.

sudá parita) nebo lichý počet jedniček (tzv. lichá parita). [9]

Definice 3.3.2. Samoopravný rozš́ıřený Hamming̊uv kód je lineárńı (n, k) kód,

který vznikne rozš́ı̌reńım Hammingova kódu o prvek z abecedy celkové kontroly

parity. Je to tedy (2m, 2m − m − 1) kód všech slov (v0v1 . . . v2m) takových, že

(v0v1 . . . v2m−1) je kódové slovo Hammingova kódu a plat́ı

v2m = (v0 + v1 + . . .+ v2m−1) mod 2. [9]

Poznámka 3.3.4. Princip rozš́ı̌reńı Hammingova kódu spoč́ıvá v přidáńı prvku

z abecedy celkové kontroly parity ke každému řádku kontrolńı matice H a dále

doplněńı řádku jedniček. Tzn., že z lineárńıho (n, k) kódu K vytvoř́ıme (n+ 1, k)

kód všech slov (v0v1 . . . vn−1vn) takových, že plat́ı

(v0v1 . . . vn−1) ∈ K a vn = (v0 + v1 + . . .+ vn−1) mod 2. [9]

Nově vzniklá kontrolńı matice H∗ rozš́ı̌reného Hammingova kódu má tvar:

Obrázek 2: Rozš́ı̌reńı kontrolńı matice H Hammingova kódu

Definice 3.3.3. Necht’ H je kontrolńı matice lineárńıho (n, k) kódu. Syndrom

slova w je vektor #»s , pro který plat́ı #»s T = H · wT . [7]
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Definice 3.3.4. Necht’ v je slovo vyslané kodérem a w je slovo přijaté dekodérem.

Pak e = w − v je chybové slovo. [7]

Poznámka 3.3.5. Slovo chybové i přijaté má stejný syndrom. Plat́ı tedy H · wT

= H · eT . Je-li H · wT = #»o , pak při přenosu dat nedošlo k žádné chybě. Je-li

H · wT 6= #»o , pak při přenosu dat došlo alespoň k jedné chybě. Došlo-li k jediné

chybě na pozici j, tak syndrom chybového slova je roven j-tému sloupci kontrolńı

matice H. Tuto chybu oprav́ıme tak, že změńıme hodnotu na pozici j na opačnou.

Jestliže tedy na pozici j byla 1, pak ji nastav́ıme na 0 a opačně. Došlo-li k v́ıce

než jedné chybě při přenosu dat, pak chybové slovo neńı možné opravit (resp.

zpětně zkonstruovat). [9]
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4 Kryptografie

4.1 Stručný úvod do kryptografie

Kryptografie je vědńı discipĺına, která se zabývá metodami ochrany dat před

neautorizovaným př́ıstupem. Ćılem kryptografie je poslat někomu zprávu tak, aby

zprávě kromě odeśılatele už rozuměl pouze jej́ı př́ıjemce a nikdo jiný. Samotné

slovo kryptografie je odvozeno ze dvou slov - kryptos = skrytý, graphein = text.

Ted’ je hned jasné, o čem kryptografie je. Nyńı tedy formálně.

Definice 4.1.1. Otevřenou abecedou rozumı́me konečnou množinu A znak̊u,

které použ́ıváme k zápisu nešifrovaných zpráv. Otevřeným textem rozumı́me zprá-

vu určenou k zašifrovańı, tj. konečný řetězec c = c1 . . . cn, kde ci ∈ A (n je délka

řetězce). Prostorem otevřených text̊u nazýváme množinu všech otevřených text̊u

a znač́ıme C. [10]

Definice 4.1.2. Šifrovaćı abecedou rozumı́me konečnou množinu B znak̊u, které

použ́ıváme k zápisu zašifrovaných zpráv. V př́ıpadě, kdy B = {0, 1}, pak mluv́ıme

o binárńım šifrováńı. Šifrovaným textem rozumı́me konečný řetězec d = d1 . . . dn

znak̊u šifrovaćı abecedy, který vznikl zašifrováńım některého otevřeného textu

c ∈ C. Prostorem šifrovaných text̊u nazýváme množinu všech šifrovaných text̊u

a znač́ıme D. [10]

Definice 4.1.3. Kĺıčem rozumı́me uspořádanou dvojici k = (r, s), kde r je

šifrovaćı kĺıč (parametr šifrovaćı metody) a s je dešifrovaćı kĺıč (parametr dešifro-

vaćı metody). Množina všech kĺıč̊u se nazývá prostor kĺıč̊u a znač́ı se Q. Nav́ıc

plat́ı, že (r, s) ∈ Q. [10]

Definice 4.1.4. Konkatenaćı vektor̊u rozumı́me zřetězeńı neboli spojováńı dvou

či v́ıce vektor̊u do jednoho. Konkatenaci vektor̊u budeme značit symbolem ~.
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Definice 4.1.5. Substitučńı tabulka je tabulka, která ke každému znaku dané

abecedy přǐrad́ı č́ıselnou hodnotu (resp. jiný znak).

Poznámka 4.1.1. Znaky v substitučńı tabulce jsou většinou umı́stěny v prvńım

řádku. Č́ıselné hodnoty pak v daľśıch řádćıch. Běžná substitučńı tabulka má

znaky A−Z, které odpov́ıdaj́ı hodnotám 1−26. V tomto textu budeme pracovat

s vlastńımi substitučńımi tabulkami.

Poznámka 4.1.2. Šifrovaćım kĺıčem může být obecně cokoliv, co vytvoř́ı odeśı-

latel (slovo, č́ısla, tabulka, . . .). V tomto textu se omeźıme na šifrovaćı kĺıče,

které budou mı́t charakter konkatenace vektor̊u a substitučńıch tabulek, a dále

na šifrovaćı kĺıče, které budou reprezentovány šifrovaćı matićı R. Dešifrovaćı ma-

tice pak bude ve tvaru R−1. U šifrovaćıch (resp. dešifrovaćıch) matic se ještě nav́ıc

omeźıme na čtvercové matice.

Definice 4.1.6. Šifrováńım rozumı́me proces transformace otevřeného textu do

zašifrovaného textu (neboli
”
nesrozumitelného“ textu). Dešifrovańı je inverzńı

proces k šifrovańı, tedy jde o proces převedeńı zašifrovaného textu do podoby

otevřeného textu. [10]

Definice 4.1.7. Šifrovaćı transformaćı (funkćı) rozumı́me vzájemně jednoznačné

zobrazeńı Rr : C → D definované pro všechny šifrovaćı kĺıče z prostoru kĺıč̊u Q.

Dešifrovaćı transformaćı (funkćı) rozumı́me zobrazeńı Ss : D → C, které je in-

verzńı k zobrazeńı Rr : C → D, kde (r, s) ∈ Q. [10]

Poznámka 4.1.3. Vzájemná jednoznačnost zobrazeńı Rr je nutnou podmı́nkou

pro možnost zpětného dešifrovańı. [10]

Definice 4.1.8. Uspořádaná trojice (R,S, Q), kde

Q = {(r, s)} je prostor kĺıč̊u,

R = {Rr | (r, s) ∈ Q} je množina šifrovaćıch transformaćı,

S = {Ss | (r, s) ∈ Q} je množina dešifrovaćıch transformaćı,

tvoř́ı šifrovaćı systém, jestliže

∀k = (r, s) ∈ Q ∀c ∈ C : Ss(Rr(c)) = c,

tedy každý kĺıč (r, s) jednoznačně definuje dvojici transformaćı Rr a Ss (šifrovaćı

a j́ı př́ıslušnou dešifrovaćı), které jsou navzájem inverzńı. [10]
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Poznámka 4.1.4. Šifrováńı se obvykle děĺı na dva typy. Prvńım typem je tzv.

asymetrické šifrováńı. Metody asymetrického šifrováńı jsou takové šifrovaćı me-

tody, kde dešifrovaćı kĺıč je výpočetně složité odvodit ze šifrovaćıho kĺıče. Asy-

metrické šifrováńı neńı předmětem této práce. Druhým typem je tzv. symetrické

šifrováńı. Metody symetrického šifrováńı jsou šifrovaćı metody, kde dešifrovaćı

kĺıč je výpočetně snadné odvodit ze šifrovaćıho kĺıče. V tomto textu si ukážeme

některé aplikace symetrického šifrováńı. [10]

4.2 Symetrické šifry

Transpozičńı šifra

Definice 4.2.1. Transpozičńı šifra je bloková šifra délky n, tj. šifra, která nej-

prve rozděĺı otevřený text na bloky délky n po sobě jdoućıch znak̊u a poté každý

blok zašifruje jako celek. [10]

Poznámka 4.2.1. Pokud délka otevřeného textu neńı násobkem č́ısla n, můžeme

doplnit text libovolnými znaky na délku rovnou prvńımu násobku č́ısla n větš́ımu

než d, kde d je délka celého řetězce. V tomto textu bude jeden blok reprezentován

jedńım vektorem. [10]

Princip šifrováńı: Šifrovaćı kĺıč π nálež́ı množině permutaćı přirozených č́ısel

neboli π ∈ Sn, kde n ∈ N. Šifrováńı poté prob́ıhá tak, že nejprve rozděĺıme

otevřený text na bloky délky n po sobě jdoućıch znak̊u, tj. c = c(1) . . . c(k), kde

c(i) = c
(i)
1 . . . c

(i)
n je i -tý blok. Následně každý blok c(i) zašifrujeme pomoćı trans-

formace:

Rπ(c
(i)
1 . . . c(i)n ) = c

(i)
π(1) . . . c

(i)
π(n) , i = 1, 2, . . . , k. [10]

Princip dešifrováńı: Dešifrovaćı kĺıč π−1 ∈ Sn, kde π−1 označuje inverzńı

permutaci k π. Dešifrováńı poté prob́ıhá tak, že nejprve zašifrovaný text rozděĺıme

na bloky délky n po sobě jdoućıch znak̊u, tj. d = d(1) . . . d(k), kde d(i) = d
(i)
1 . . . d

(i)
n

je i -tý blok. Následně každý blok d(i) dešifrujeme pomoćı transformace:

Sπ−1(d
(i)
1 . . . d(i)n ) = c

(i)

π−1(1) . . . c
(i)

π−1(n) , i = 1, 2, . . . , k. [10]
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Afinńı šifra

Definice 4.2.2. Afinńı šifra je šifra, která při šifrováńı nejprve převede otevřený

text c = c1 . . . cn na č́ıselný řetězec c = x1 . . . xn a následně tento řetězec c =

x1 . . . xn zašifruje. [10]

Poznámka 4.2.2. Šifrováńı se provede např́ıklad tak, že každý znak nahrad́ıme

jeho pořad́ım v rámci uvažované otevřené abecedy - substitučńı tabulky. Důležitým

faktorem pro afinńı šifru je šifrovaćı kĺıč, který je ve tvaru (a, b), kde a, b ∈ Zp,

přičemž NSD(a, p) = 1 (p v tomto př́ıpadě nemuśı být prvoč́ıslo). [10]

Princip šifrováńı: Šifrovaćı kĺıč je tvaru (a, b), kde a, b ∈ Zp a NSD(a, p) = 1.

Šifrováńı je poté výsledkem aplikace šifrovaćı funkce

R(a,b)(x1 . . . xn) = d1 . . . dn,

kde xi je č́ıselná reprezentace i-tého znaku otevřeného textu a

di = ((a · xi + b)mod p)

je č́ıselná reprezentace i-tého znaku šifrovaného textu. [10]

Princip dešifrováńı: Dešifrovaćı kĺıč je ve tvaru (a−1, b), kde a−1 je inverzńı

prvek k a mod p. Dešifrováńı je pak výsledkem aplikace dešifrovaćı funkce

S(a−1,b)(d1 . . . dn) = x1 . . . xn, kde xi = (a−1 · (di − b)mod p). [10]

Hillova šifra

Definice 4.2.3. Hillova šifra je substitučńı bloková šifra délky n, která je nav́ıc

polygrafická, tj. nahrazuje m-tice znak̊u za jiné m-tice. [10]

Poznámka 4.2.3. Substitučńı šifra je taková šifra, ve které znaky otevřeného

textu měńı svou identitu, ale neměńı svou pozici. Hillova šifra pracuje s mati-

cemi. Pokud délka otevřeného textu neńı násobkem č́ısla n, můžeme doplnit text

libovolnými znaky na délku rovnou nejbližš́ımu větš́ımu násobku č́ısla n. [10]

Princip šifrováńı: Šifrovaćı kĺıč je ve tvaru matice R = (rij) řádu n, kde

rij ∈ Zp (p v tomto př́ıpadě nemuśı být prvoč́ıslo). Šifrováńı poté prob́ıhá tak, že

nejprve rozděĺıme otevřený text c na bloky délky n po sobě jdoućıch znak̊u, tj.
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c = c(1) . . . c(k), kde c(i) = c
(i)
1 . . . c

(i)
n . Následně každý blok c(i), i = 1, 2, . . . , k

převedeme na č́ıselný řetězec x(i) = (x
(i)
1 , . . . , x

(i)
n ), který zašifrujeme pomoćı

transformace:

RR(y(i)) = x(i) ·R (mod p),

kde y(i) = (y
(i)
1 , . . . , y

(i)
n ) je č́ıselný vektor reprezentuj́ıćı i-tý blok zašifrovaného

textu d = (y(1), . . . , y(k)). [10]

Princip dešifrováńı: Dešifrovaćı kĺıč je ve tvaru R−1, tj. inverzńı matice R mo-

dulo p. Dešifrováńı prob́ıhá zcela analogicky jako šifrováńı. Tedy zašifrovaný text

rozděĺıme na č́ıselné bloky (vektory) y(i), i = 1, 2, . . . k, délky n, které dešifrujeme

pomoćı inverzńı transformace:

SR−1(x(i)) = y(i) ·R−1 (mod p). [10]

Poznámka 4.2.4. Existence inverzńı matice R−1 je nezbytnou podmı́nkou pro

jednoznačné dešifrováńı. Lze dokázat, že nutnou a postačuj́ıćı podmı́nkou je

NSD(detR, p) = 1. Nav́ıc plat́ı vztah R ·R−1 ≡ E (mod p). [10]

Věta 4.2.1. Transpozičńı šifra, afinńı šifra a Hillova šifra patř́ı mezi symetrické

šifry.

Poznámka 4.2.5. Existuj́ı i daľśı symetrické šifry, např́ıklad tzv. jednoduchá

substituce, Vigen èrova šifra, binárńı bloková šifra a daľśı. V tomto textu si vysta-

č́ıme pouze s výše definovanými šiframi a jejich kombinacemi.

Poznámka 4.2.6. Otevřený nebo šifrovaný text v šifrovaćıch nebo dešifrovaćıch

matićıch budeme v tomto textu č́ıst vertikálně nebo horizontálně. Čteńı textu

vertikálně nazýváme vertikálńı šifrovańı. Čteńı textu horizontálně nazýváme ho-

rizontálńı šifrovańı.

Obrázek 3: Vertikálńı a horizontálńı šifrováńı
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Řešené př́ıklady
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1 Př́ıklady z teorie graf̊u

Př́ıklad 1

Zadáńı: Dva kamarádi Martin a Petr se vsadili o čokoládu, že Martin nedokáže

spoč́ıtat počet koster v neorientovaném grafu připomı́naj́ıćı pentagram. Petr Mar-

tinovi vysvětlil, co to kostra grafu je, přičemž obratem na to Martin začal jednu

po druhé poč́ıtat. Po chv́ıli poč́ıtańı se Martin zastavil a přemýšlel, zda danou

kostru již nezapoč́ıtal. Pomozte Martinovi spoč́ıtat počet koster.

Řešeńı: V prvńı řadě vytvoř́ıme neorientovaný graf, který bude připomı́nat pen-

tagram a označ́ıme vrcholy a hrany.

Obrázek 4: Pentagram

Nyńı sestav́ıme Laplaceovu matici sousednosti L(G) tohoto neorientovaného grafu,

která bude mı́t tvar:

L(G) =


4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 4 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

 .
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Počet koster budeme poč́ıtat jako determinant Laplaceovy matice sousednosti

L(G) bez posledńıho řádku a posledńıho sloupce, tedy

det


4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

 = 125.

Zjistili jsme, že neorientovaný graf připomı́naj́ıćı pentagram má přesně 125 koster

a t́ım pádem jsme pomohli Martinovi vyhrát vsázku.

Př́ıklad 2

Zadáńı: Určete hodnost matice incidence I(G) orientovaného grafu G = (V,E)

s |V (G)| = n vrcholy a |E(G)| = m hranami.

Nápověda: Začněte se stromem, pak uvažujte souvislý graf a nakonec zobecněte

na jednoduchý graf.

Řešeńı: V prvńı řadě vytvoř́ıme libovolný strom a rovnou k němu urč́ıme matici

incidence I(G1) a vypočteme hodnost h(I(G1)) této matice.

Obrázek 5: Strom s matićı incidence a hodnost́ı této matice

Dále vytvoř́ıme libovolný souvislý graf. Opět k němu rovnou urč́ıme matici inci-

dence I(G2) a vypočteme hodnost h(I(G2)) této matice.

Obrázek 6: Souvislý graf s matićı incidence a hodnost́ı této matice
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V posledńı řadě vytvoř́ıme libovolný jednoduchý graf a postupujeme analogicky

jako v předchoźıch př́ıpadech.

Obrázek 7: Jednoduchý graf s matićı incidence a hodnost́ı této matice

Docháźıme k závěru, že hodnost matice incidence I(G) orientovaného grafu je

h(I(G)) = n− 1.

Poznámka: Kdybychom v tomto textu uvažovali smyčky v grafech, pak bychom

hodnost matice incidence I(G) mohli zobecnit i na obecný graf. Tento graf

v tomto textu nebyl definován, avšak výsledek by byl stejný.

Př́ıklad 3

Zadáńı: Mladý inženýr se rozhodl, že založ́ı jednu nejmenovanou internetovou

společnost. Jako správný zač́ınaj́ıćı podnikatel si v prvńı řadě našel potenciálńı

zájemce a následně si zmapoval cesty k jednotlivým zájemc̊um. Všechny tyto

hodnoty zaznamenal do matice sousednosti S(G). Nalezněte nejkratš́ı možnou

trasu ke všem potenciálńım zájemc̊um, tak aby je všechny propojila a určete

nejvhodněǰśı mı́sto pro založeńı společnosti.

S(G) =



0 0 0 7 4 1 0
0 0 0 0 5 9 7
0 0 0 1 3 0 10
7 0 1 0 4 0 0
4 5 3 4 0 8 8
1 9 0 0 8 0 0
0 7 10 0 8 0 0


Řešeńı: V matici sousednosti S(G) hodnoty na mı́stě sij určuj́ı, zda dva dané

vrcholy vi a vj jsou spojeny hranou či nikoli. Pokud je graf ohodnocený, pak každý

prvek sij je roven ohodnoceńı hrany ei. Dále si můžeme všimnout, že tato matice

sousednosti je symetrická, takže se bude jednat o ohodnocený neorientovaný graf,

který může mı́t např. následuj́ıćı tvar:
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Obrázek 8: Ohodnocený neorientovaný graf č.1

Nyńı budeme hledat minimálńı kostru grafu. K nalezeńı této kostry grafu využijeme

Kruskalova algoritmu a rovnou uděláme prvńı krok algoritmu, tj.

Obrázek 9: Kruskal̊uv algoritmus
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Po dokončeńı Kruskalova algoritmu vid́ıme, že nejvhodněǰśım mı́stem pro založeńı

nejmenované internetové společnosti je mı́sto (vrchol) s označeńım v5.

Př́ıklad 4

Zadáńı: Nakreslete souvislý graf zadaný matićı sousednosti S(G). Pokud při kon-

strukci tohoto souvislého grafu vznikne nějaké trojrozměrné těleso, vypoč́ıtejte

jeho objem a povrch.

S(G) =



0 7 0 2 3 0 0 0
7 0 2 0 0 3 0 0
0 2 0 7 0 0 3 0
2 0 7 0 0 0 0 3
3 0 0 0 0 7 0 2
0 3 0 0 7 0 2 0
0 0 3 0 0 2 0 7
0 0 0 3 2 0 7 0


Nápověda: Jistě se bude jednat o trojrozměrné těleso. Při sestrojováńı tohoto

trojrozměrného tělesa dbejte na to, aby hrany se stejným ohodnoceńım byly stejně

dlouhé a měly stejné směry.

Řešeńı: Analogicky jako v předchoźım př́ıkladě vytvoř́ıme neorientovaný graf,

nebot’ matice S(G) je symetrická. V matici sousednosti S(G) hodnoty na mı́stě sij

odpov́ıdaj́ı ohodnoceńı hrany vedoućı z vrcholu vi do vrcholu vj. Dále je potřeba

si uvědomit, že se bude jednat o nějaké trojrozměrné těleso, které má 8 vrchol̊u.

Důležitým faktorem při konstruováńı tohoto grafu je, aby hrany se stejným ohod-

noceńım byly stejně dlouhé a měly stejné směry (viz nápověda). Z tohoto d̊uvodu

bude neorientovaný graf vypadat následovně:

Obrázek 10: Ohodnocený neorientovaný graf č.2
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Vid́ıme, že naše hledané trojrozměrné těleso odpov́ıdá kvádru, jehož strany maj́ı

2, 3 a 7 jednotek. Objem kvádru je tedy V = a · b · c = 2 · 3 · 7 = 42 jednotek

krychlových a povrch kvádru je S = 2·(a·b+a·c+b·c) = 2·(2·3+2·7+3·7) = 82

jednotek čtverečných.

Př́ıklad 5

Zadáńı: Poštovńı kurýr každý pátek pravidelně rozváž́ı reklamńı letáky do sedmi

navzájem r̊uzných rodin. Žádné dvě rodiny nežij́ı ve stejném městě. Poštovńımu

kurýrovi se posledńı dobou zdá, že prodělává peńıze na benźınu za cestu. Z to-

hoto d̊uvodu si nakreslil mapu všech měst, ve kterých rodiny žij́ı. Dále na mapě

vyznačil cesty, kterými kdy projel a připsal ke každé z nich počet litr̊u benźınu,

které za cestu spotřeboval. Pomozte poštovńımu kurýrovi nalézt nejlevněǰśı cestu

a určete, kolik tato cesta bude stát Kč. Pro výpočet předpokládejte, že cena za

jeden litr benźınu je 35 Kč.

Obrázek 11: Mapa všech měst

Řešeńı: Jedńım z možných zp̊usob̊u nalezeńı této cesty je ji náhodně zvolit

a doufat, že je to nejkratš́ı, a tud́ıž nejlevněǰśı možná cesta. Tento zp̊usob neńı jistě

v̊ubec efektivńı, a proto tuto úlohu vyřeš́ıme jinak. K řešeńı tohoto př́ıkladu nám

pomůže Floyd̊uv–Warshall̊uv algoritmus. Dı́ky tomuto algoritmu zjist́ıme limit

nejkratš́ı možné cesty od vrcholu vi po vrchol vj. V prvńı řadě sestroj́ıme matici

a následně budeme přepoč́ıtávat hodnoty v této matici dle Floydova-Warshallova

algoritmu.
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Obrázek 12: Floyd̊uv–Warshall̊uv algoritmus

Vid́ıme, že limit vyšel 38 litr̊u. Tento limit je nejmenš́ı možný v tomto př́ıpadě.

Nejlevněǰśı cesta je tedy za 38 · 35 = 1330 Kč. Dále si můžeme z výsledné matice

všimnout, že tato cesta zač́ıná ve vrcholu s označeńım v1. Nyńı budeme vytvářet

strom všech možných cest a hledat tu nejmenš́ı možnou (tedy do limitu 38l).

Začneme u vrcholu v1 (pozn.: nezálež́ı na tom, kterým vrcholem začneme, protože

muśıme objet všechny vrcholy a vrátit se do vrcholu p̊uvodńıho). Strom budeme

konstruovat
”
odzadu“ a budeme se držet koncepce algoritmu prohledáváńı do

š́ı̌rky. Nav́ıc při konstruováńı tohoto stromu budeme sč́ıtat hodnoty hran, kterými
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se lze dostat do vrcholu vi z vrcholu v1 a budeme ověřovat, zda jsme nevytvořili

cyklus, anebo jsme nepřekročili limit. Pro ilustraci: Chceme se dostat do vrcholu

v2 ”
odzadu“. Vytvoř́ıme sled mezi vrcholy v1−v6−v2. Ohodnoceńı hran sečteme

a dostaneme 17 + 9 = 26l. Takhle budeme pokračovat dál, až nakonec vytvoř́ıme

následuj́ıćı strom:

Obrázek 13: Strom vytvořený prohledáváńım do š́ı̌rky
”
odzadu“

Vid́ıme, že d́ıky tomuto stromu jsme tedy nalezli nejkratš́ı okružńı cestu s limi-

tem 38l, kterou tvoř́ı sled vrchol̊u v1 − v4 − v3 − v2 − v5 − v7 − v6 − v1.

Poznámka: Obecně neplat́ı, že Floyd̊uv-Warshall̊uv algoritmus urč́ı nejkratš́ı

okružńı cestu. To, že nám to v tomto př́ıpadě vyšlo stejně, je čistě náhodné!

Tento př́ıklad byl ilustraćı tzv. problému nalezeńı Hamiltonovského cyklu s li-

mitem K. Tento problém patř́ı do tř́ıdy NPTIME. Předchoźı algoritmus má ex-

ponenciálńı časovou složitost, a proto neńı v praxi použitelný. Všechny pojmy

uvedené v tomto př́ıkladu, jako např.
”
Hamiltonovský cyklus“ atd., jsou po-

drobně popsány v odborné literatuře. Doporučuj́ı např. učebńı text Teoretická

informatika, který je dostupný na tomto odkazu: http://phoenix.inf.upol.

cz/~jancarp/VAS/jancar-ti-vsb.pdf.
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2 Př́ıklady z teorie kódováńı

Př́ıklad 1

Zadáńı: Ověřte, zda množina kódových slov tvoř́ı lineárńı (n, k) kód a nalezněte

bázi a dimenzi tohoto kódu, pokud existuje.

a) K = {(11111),(11110),(11101),(11100),(00011),(00010),(00001),(00000)}

b) K = {(11111111),(10101010),(11011011),(01010101),(01110001),

(10001110),(10001110),(01110001)}

Řešeńı a:

K = {(11111),(11110),(11101),(11100),(00011),(00010),(00001),(00000)}

- z teorie v́ıme, že kód je lineárńı, pokud tvoř́ı lineárńı podprostor lineárńıho

prostoru Zn2 . Množina kódových slov muśı tedy být uzavřená na operaci sč́ıtańı

vektor̊u a násobeńı vektor̊u skalárem v Zn2 . Ověř́ıme.

Sč́ıtáńı:

(11111) + (11110) = (00001) 3 (11110) + (11101) = (00011) 3

(11111) + (11101) = (00010) 3 (11110) + (11100) = (00010) 3

(11111) + (11100) = (00011) 3 (11110) + (00011) = (00001) 3

(11111) + (00011) = (11100) 3 (11110) + (00010) = (00000) 3

...
...

Až bychom nakonec ověřili všechny možné kombinace a zjistili, že tato množina

K je uzavřená na operaci sč́ıtańı vektor̊u.

Násobeńı:

1 ·
”
kódové slovo z K“ =

”
kódové slovo z K“ 3

0 ·
”
kódové slovo z K“ = (00000) 3

46



Vid́ıme, že množina K tvoř́ı lineárńı (n, k) kód. Nyńı můžeme nalézt bázi a následně

určit dimenzi tohoto lineárńıho (n, k) kódu.

Báze: 

1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
1 1 1 0 0
0 0 0 1 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


∼



1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


∼



1 1 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Báze lineárńıho kódu je např́ıklad množina {(11101),(00010),(00001)}. Dimenze

tohoto kódu je 3. Jedná se tedy o lineárńı (5, 3) kód.

Poznámka: Skutečně se jedná o bázi tohoto lineárńıho (n, k) kódu. Každá

lineárńı kombinace těchto tř́ı kódových slov (vektor̊u) nám dá některé kódové

slovo (vektor), které lež́ı v množině K. Ověřte.

Řešeńı b:

K = {(11111111),(10101010),(11011011),(01010101),(01110001),(10001110),

(10001110),(01110001)}

- analogicky jako v př́ıpadě a) ověř́ıme uzavřenost na operaci sč́ıtańı vektor̊u

a násobeńı vektor̊u skalárem v Zn2 .

Sč́ıtańı:

(11111111) + (10101010) = (01010101) 3

(11111111) + (11011011) = (00100100) 3

(11111111) + (01110001) = (10001110) 3

(10101010) + (11011011) = (01110001) 3

...

A tak pokračujeme dál, až bychom opět prověřili všechny možnosti. Pojd’me se

nyńı pod́ıvat na uzavřenost násobeńı.

Násobeńı:

1 ·
”
kódové slovo z K“ =

”
kódové slovo z K“ 3

0 ·
”
kódové slovo z K“ = (00000000) 7
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Vid́ıme, že kódové slovo (00000000) nenálež́ı množině K, a tud́ıž se nejedná

o lineárńı (n, k) kód. Báze a dimenze tohoto kódu neexistuj́ı. Ověřte.

Poznámka: Na začátku tohoto př́ıkladu v části b) jsme si mohli všimnout, že

v množině K neńı nulový vektor #»o , resp. kódové slovo (00000000) a t́ım pádem

automaticky tato množina K nemůže být lineárńım (n, k) kódem.

Př́ıklad 2

Zadáńı: Nalezněte některou kontrolńı matici H, když v́ıte, že generuj́ıćı matice G

lineárńıho (n, k) kódu nad Z5 má tvar:

G =


−4 5 1 3 −1 2 −2 −2 3
1 1 3 1 1 3 3 2 2
−4 5 −3 −1 2 3 −4 −1 2
1 5 −2 1 −4 1 0 1 0


Řešeńı: V prvńı řadě se budeme snažit o to, abychom tuto generuj́ıćı matici G

dostali do tvaru (E |C), kde (E |C) je matice vzniklá z G pomoćı elementárńıch

řádkových transformaćı modulo 5.
−4 5 1 3 −1 2 −2 −2 3
1 1 3 1 1 3 3 2 2
−4 5 −3 −1 2 3 −4 −1 2
1 5 −2 1 −4 1 0 1 0

 ∼


1 0 1 3 4 2 3 3 3
1 1 3 1 1 3 3 2 2
1 0 2 4 2 3 1 4 2
1 0 3 1 1 4 0 1 0

 ∼


1 0 1 3 4 2 3 3 3
0 1 2 3 2 1 0 4 4
0 0 1 1 3 1 3 1 4
0 0 2 3 2 2 2 3 2

 ∼

∼


1 0 0 2 1 1 0 2 4
0 1 0 2 4 0 2 3 0
0 0 1 1 3 1 3 1 4
0 0 0 1 1 0 1 1 4

 ∼


1 0 0 0 4 1 3 0 1
0 1 0 0 2 0 0 1 2
0 0 1 0 2 1 2 0 0
0 0 0 1 1 0 1 1 4


Nyńı již neńı složité nalézt některou kontrolńı matici H, tedy

H =


−4 −2 −2 −1 1 0 0 0 0
−1 0 −1 0 0 1 0 0 0
−3 0 −2 −1 0 0 1 0 0
0 −1 0 −1 0 0 0 1 0
−1 −2 0 −4 0 0 0 0 1

 ∼


1 3 3 4 1 0 0 0 0
4 0 4 0 0 1 0 0 0
2 0 3 4 0 0 1 0 0
0 4 0 4 0 0 0 1 0
4 3 0 1 0 0 0 0 1

 .

Poznámka: Tento př́ıklad lze řešit i Gaussovou eliminačńı metodou.
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Př́ıklad 3

Zadáńı: Nalezněte některou generuj́ıćı matici G, když v́ıte, že kontrolńı matice H

lineárńıho (n, k) kódu nad Z11 má tvar:

H =

(
2 1 −6 10 −7 5
8 2 −4 2 −3 6

)

Řešeńı: Budeme postupovat téměř analogicky jako v předchoźım př́ıkladě. Je-

diná změna bude ta, že kontrolńı matici H se budeme snažit upravit do tvaru

(CT |E), kde (CT |E) je matice vzniklá z H pomoćı elementárńıch řádkových

transformaćı modulo 11.(
2 1 −6 10 −7 5
8 2 −4 2 −3 6

)
∼
(

2 1 4 10 4 5
8 2 7 2 8 6

)
∼
(

2 1 5 10 4 5
4 0 8 4 0 −4

)
∼
(

2 1 5 10 4 5
−1 0 −2 −1 0 1

)
∼

∼
(

7 1 4 4 4 0
−1 0 −2 −1 0 1

)
∼
(

10 3 1 1 1 0
−1 0 −2 −1 0 1

)
∼
(

10 3 1 1 1 0
10 0 9 10 0 1

)
Některá generuj́ıćı matice G má tedy tvar:

G =


1 0 0 0 −10 −10
0 1 0 0 −3 0
0 0 1 0 −1 −9
0 0 0 1 −1 −10

 ∼


1 0 0 0 1 1
0 1 0 0 8 0
0 0 1 0 10 2
0 0 0 1 10 1


Poznámka: V tomto i předchoźım př́ıkladě skutečně plat́ı vztah G · H T = O.

Ověřte.

Př́ıklad 4

Zadáńı: Určete, zda daný kód je cyklický.

a) K = {(111111111)} d) K = {(111011001)}

b) K = {(100010101)} e) K = {(000000000)}

c) K = {(100100100)} f) K = {(111000000)}

Řešeńı:

a) Ano. Tento kód je cyklický. Cyklickým posunem doprava či doleva dostáváme

tentýž kód. Jedná se o opakovaćı kód délky 9.
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b) Ne. Uvažujme např́ıklad generuj́ıćı matici G, která má tvar:

G =

1 0 0 0 1 0 1 0 1
1 1 0 0 0 1 0 1 0
0 1 1 0 0 0 1 0 1

 .

Vid́ıme, že žádnou elementárńı řádkovou transformaćı se nedostaneme do tvaru

(E |C), tj. kód neńı cyklický.

c) Ano. Generuj́ıćı matice G tohoto kódového slova je ve tvaru:

G =

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 .

Jedná se o systematický kód K = {(abcabcabc) ; a, b, c ∈ Z2}.

d) Ne. Uvažujme generuj́ıćı matici G ve tvaru:

G =

1 1 1 0 1 1 0 0 1
1 1 1 1 0 1 1 0 0
0 1 1 1 1 0 1 1 0

 ∼
1 0 0 1 0 1 1 1 1

1 0 0 0 1 1 0 1 0
0 1 1 1 1 0 1 1 0

 .

Stejně jako v př́ıpadě b) se nedostaneme do námi požadovaného tvaru (E |C).

e) Analogicky jako v př́ıpadě a).

f) Ne. Generuj́ıćı matice G tohoto kódového slova je ve tvaru:

G =

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 .

Tento kód se nazývá tzv. koktavý kód K = {(aaabbbccc) ; a, b, c ∈ Z2} délky n.

V tomto př́ıpadě kódové slovo nabývá délky 9. Permutaćı znak̊u v tomto kódovém

slově lze vytvořit systematický kód, viz. př́ıklad c).

Poznámka: Koktavé kódy jsou obecně lineárńı, ale postrádaj́ı systematické

kódováńı, a proto nejsou cyklické.
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Př́ıklad 5

Zadáńı: Ověřte, že binárńı kód kontroly parity délky 3, K = {(000),(011),(101),

(110)}, generovaný polynomem g(x) = x + 1 je cyklický a nav́ıc určuje toto

kódováńı:

#»v = (00)

#»v = (01)

#»v = (10)

#»v = (11)

Řešeńı: V prvńı řadě urč́ıme bázi tohoto kódu, tj.
0 0 0
0 1 1
1 0 1
1 1 0

 ∼


1 1 0
0 1 1
0 0 0
0 0 0

 .

Kód K je ekvivalentńı množině polynomů K = {0, x+ 1, x2 + 1, x2 + x}. Zadané

kódováńı můžeme rovněž přepsat jako polynomy, tj.

#»v = (00) 7→ 0

#»v = (01) 7→ 1

#»v = (10) 7→ x

#»v = (11) 7→ x + 1

Nyńı hledáme polynom u(x) = v(x) · g(x). Hodnoty polynomu u(x) by měly být

ekvivalentńı hodnotám kódu K (v př́ıpadě, že se jedná o cyklický kód generovaný

polynomem g(x)). Ověř́ıme.

u(x) = 0 · (x+ 1) = 0⇔ (000)

u(x) = 1 · (x+ 1) = x+ 1⇔ (011)

u(x) = x · (x+ 1) = x2 + x⇔ (110)

u(x) = (x+ 1) · (x+ 1) = x2 + 2x+ 1 ≡ x2 + 1⇔ (101)

Což je očekávaný výsledek vzhledem k tomu, jak nám vyšla báze tohoto kódu.

Jedná se tedy o cyklický kód generovaný polynomem g(x) = x + 1.
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Př́ıklad 6

Zadáńı: Uvažujme Hamming̊uv (7,4) kód a přijatá slova

a) (1010101)

b) (1101110)

c) (0010100)

Jaké slovo je chybné? Pokud při přenosu došlo k jedné chybě, pokuste se tuto

chybu naj́ıt a zkonstruovat p̊uvodńı slovo.

Řešeńı: Kontrolńı matice Hammingova (7,4) kódu má tvar:

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Hledáme syndrom kódového slova w, tj. vektor #»s = H · wT .

a)

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ·


1
0
1
0
1
0
1


=

0
0
0



Vid́ıme, že nám syndrom vyšel nulový, tj., při přenosu nedošlo k žádné chybě.

b)

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ·


1
1
0
1
1
1
0


=

1
0
0



Syndrom slova vyšel nenulový, takže při přenosu došlo k chybě. Syndrom #»s je

ekvivalentńı čtvrtému sloupci kontrolńı matice Hammingova (7,4) kódu, z čehož

vyplývá, že je potřeba opravit čtvrtý bit přijatého slova na kódové slovo w =

(1100110).
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c)

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ·


0
0
1
0
1
0
0


=

1
1
0



Analogicky jako v předchoźım př́ıpadě nám vyšel nenulový syndrom, takže opět

došlo při přenosu k chybě. Syndrom odpov́ıdá šestému sloupci kontrolńı matice

Hammingova (7,4) kódu, tj. oprav́ıme šestý bit. Původńı kódové slovo bylo ve

tvaru w = (0010110).

Př́ıklad 7

Zadáńı: Uvažujme samoopravný rozš́ı̌rený Hamming̊uv (8,4) kód a přijatá kódová

slova

a) (10110110)

b) (10011001)

c) (11100111)

Které ze slov bylo chybně přijato? Pokud je možné, chybně přijatá slova opravte

a napǐste p̊uvodńı kódová slova.

Řešeńı: Kontrolńı matici samoopravného rozš́ı̌reného Hammingova (8,4) kódu

vytvoř́ıme z kontrolńı matice Hammingova (7,4) kódu přidáńım jednotkového

řádku a nulového sloupce, tj.

H∗ =


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .

Analogicky jako v předchoźım př́ıkladě hledáme syndrom kódového slova w, tj.

vektor #»s = H∗ · wT .
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a)


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 ·



1
0
1
1
0
1
1
0


=


1
1
1
1



Při přenosu došlo k jedné chybě. Je potřeba opravit sedmý bit kódového slova.

Původńı kódové slovo bylo w = (10110100).

b)


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 ·



1
0
0
1
1
0
0
1


=


0
0
0
0



Přijaté slovo odpov́ıdá odeslanému slovu. Při přenosu tedy nedošlo k žádné chybě.

c)


0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 ·



1
1
1
0
0
1
1
1


=


0
0
1
0



Při přenosu došlo k v́ıce než 1 chybě, a proto p̊uvodńı kódové slovo nelze zkon-

struovat.
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3 Př́ıklady z kryptografie

Poznámka: U př́ıklad̊u kombinace afinńı a Hillovy šifry budeme pracovat nad

množinou Zn. U těchto př́ıklad̊u budeme využ́ıvat operaci modulo n. Tuto operaci

použijeme pokud budeme hledat dešifrovaćı matici ve tvaru R−1, anebo výsledná

č́ısla v matićıch překroč́ı velikost substitučńı tabulky.

Př́ıklad 1

Zadáńı: Převed’te do binárńı reprezentace a zašifrujte následuj́ıćı text:

”
Co jsem vás opustil, mám oči v duši jen,

a skutečný m̊uj zrak, který mé kroky ř́ıd́ı,

už přestal pracovat a zpola oslepen,

po pravdě nevid́ı, i když se zdá, že vid́ı.“

(úryvek se Shakespearovy knihy Sonety, verš 113), kde každý symbol z otevřené

abecedy zašifrujte přesně do 7 bit̊u.

Řešeńı: V prvńı řadě zvoĺıme vhodné kódováńı, např. klasické ASCII (může

být klidně i UTF-8, Windows-1250, atd.). Nyńı převedeme všechny symboly od

dolńıch uvozovek po horńı uvozovky do symboliky č́ısel pomoćı námi zvolené

ASCII tabulky. (ASCII tabulka neuvažuje diakritiku, takže ani my ji zde nebu-

deme uvažovat). Dostáváme tedy tvar:

”
67 111 32 106 115 101 109 32 118 97 115 32 111 112 117 115 116 105 108 44

32 109 97 109 32 111 99 11 32 118 32 100 117 115 105 32 106 101 110 44 97

32 115 107 117 116 101 99 110 121 32 109 117 106 44 32 107 116 101 114 121

32 109 101 32 107 114 111 107 121 32 114 105 100 105 44 117 122 32 112 114

101 115 116 97 108 32 112 114 97 99 111 118 97 116 32 97 32 122 112 111 108
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97 32 111 115 108 101 112 101 110 44 112 111 32 112 114 97 118 100 101 32

110 101 118 105 100 105 44 32 105 32 107 100 121 122 32 115 101 32 122 100

97 44 32 122 101 32 118 105 100 105 46“

Zde máme přesně 153 č́ısel, které bychom mohli vyjádřit jako 51 vektor̊u, kde

každý vektor má právě 3 souřadnice (nebo také např. 17 vektor̊u o 9 souřadnićıch,

atd.). Takže bychom měli např. vektor #»u1 = (67, 111, 32), #»u2 = (106, 115, 101),

atd. Každou složku každého vektoru převedeme do dvojkové soustavy. Tj. dosta-

neme #»u1 = (1000011, 1101111, 0100000), #»u2 = (1101010, 1110011, 1100101), atd.

Když chceme vektory zašifrovat, muśıme si vytvořit nějaký šifrovaćı kĺıč. Z tohoto

d̊uvodu zvoĺıme šifrovaćı kĺıč např. takový:

r = u1 ~ u2 ~ u3 ~ . . . ~ u51

Výsledný zašifrovaný text má následuj́ıćı tvar:

”
1000011,1101111,0100000,1101010,1110011,1100101,1101101,0100000,1110110,

1100001,1110011,0100000,1101111,1110000,1110101,1110011,1110100,1101001,

1101100,0101100,0100000,1101101,1100001,1101101,0100000,1101111,1100011,

0001011,0100000,1110110,0100000,1100100,1110101,1110011,1101001,0100000,

1101010,1100101,1101110,0101100,1100001,0100000,1110011,1101011,1110101,

1110100,1100101,1100011,1101110,1111001,0100000,1101101,1110101,1101010,

0101100,0100000,1101011,1110100,1100101,1110010,1111001,0100000,1101101,

1100101,0100000,1101011,1110010,1101111,1101011,1111001,0100000,1110010,

1101001,1100100,1101001,0101100,1110101,1111010,0100000,1110000,1110010,

1100101,1110011,1110100,1100001,1101100,0100000,1110000,1110010,1100001,

1100011,1101111,1110110,1100001,1110100,0100000,1100001,0100000,1111010,

1110000,1101111,1101100,1100001,0100000,1101111,1110011,1101100,1100101,

1110000,1100101,1101110,0101100,1110000,1101111,0100000,1110000,1110010,

1100001,1110110,1100100,1100101,0100000,1101110,1100101,1110110,1101001,

1100100,1101001,0101100,0100000,1101001,0100000,1101011,1100100,1111001,

1111010,0100000,1110011,1100101,0100000,1111010,1100100,1100001,0101100,

0100000,1111010,1100101,0100000,1110110,1101001,1100100,1101001,0101110“
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Poznámka: Jedná se o transpozičńı šifru. Pokud by bylo potřeba zašifrovanou

zprávu dešifrovat, museli bychom znát šifrovaćı kĺıč a zvolené kódováńı (v tomto

př́ıpadě ASCII). Dešifrováńı by poté prob́ıhalo tak, že bychom zašifrovaný text

převedli do dekadické soustavy, následně vytvořili 51 vektor̊u o 3 souřadnićıch

a poté každou souřadnici každého vektoru převedli do symboliky znak̊u pomoćı

ASCII tabulky. Tato ASCII tabulka je obsažena v př́ıloze na konci tohoto textu.

Př́ıklad 2

Zadáńı: Zašifrujte zprávu:

”
Jsme jako kočka a myš“

pomoćı Morseovy abecedy, kde šifrovaćı kĺıč R je ve tvaru:

R =



1 2 0 1 2 1 0
2 1 1 0 1 2 1
3 2 1 1 3 2 1
0 1 0 1 2 3 0
1 1 2 1 2 1 1
1 0 2 1 0 1 2
3 1 0 1 2 3 1


.

Pro výpočet volte následuj́ıćı substituci:

0 = .

1 = −

2 = |

Řešeńı: Text přeložený do Morseovy abecedy je ve tvaru:

”
.−−− |...| − −|.||.−−− |.− | − .− | −−− || − .− | −−− | − .− .| − .− |.−

||.− || − −| − .−−|...|“.

Text po použit́ı substituce je ve tvaru:

”
0 1 1 1 2 0 0 0 2 1 1 2 0 2 2 0 1 1 1 2 0 1 2 1 0 1 2 1 1 1 2 2 1 0 1 2 1 1 1 2 1

0 1 0 2 1 0 1 2 0 1 2 2 0 1 2 2 1 1 2 1 0 1 1 2 0 0 0 2“.
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Šifrovaćı matice R je řádu 7. Abychom mohli text zašifrovat, muśıme nalézt ma-

tici, která v sobě bude obsahovat všech 69 č́ısel, a nav́ıc muśı hledaná matice

splňovat kritérium pro násobeńı, tj. hledáme matici typu 7 × m. Nejbližš́ı hle-

dané m, které obsahuje všechna č́ısla je m = 10, takže dostáváme matici 7× 10

(70. č́ıslo v matici bude reprezentovat prázdný symbol
”
|“, který je substituován

za hodnotu 2, a tud́ıž nepřijdeme o žádnou informaci). Nyńı již můžeme zprávu

zašifrovat. Č́ısla do hledané matice zaṕı̌seme tak, jak jdou za sebou a vynásob́ıme

s matićı R.

1 2 0 1 2 1 0
2 1 1 0 1 2 1
3 2 1 1 3 2 1
0 1 0 1 2 3 0
1 1 2 1 2 1 1
1 0 2 1 0 1 2
3 1 0 1 2 3 1


·



0 1 1 1 2 0 0 0 2 1
1 2 0 2 2 0 1 1 1 2
0 1 2 1 0 1 2 1 1 1
2 2 1 0 1 2 1 1 1 2
1 0 1 0 2 1 0 1 2 0
1 2 2 0 1 2 2 1 1 2
1 0 1 1 2 0 0 0 2 2


=



7 9 6 5 12 6 5 6 10 9
5 9 10 6 12 6 7 5 12 11
10 14 14 9 21 10 9 9 20 16
8 10 9 2 10 10 8 7 9 10
7 9 11 6 12 8 8 7 13 11
5 7 10 5 8 6 7 4 10 11
9 13 13 6 18 10 8 7 17 15


Pokud bychom nyńı oč́ıslovali otevřenou abecedu např. od indexu 1, tj. 1 = A,

2 = B, 3 = C atd. a následně č́ısla ve výsledné matici t́ımto zp̊usobem substitu-

ovali, dostali bychom matici ve tvaru:

G I F E L F E F J I
E I J F L F G E L K
J N N I U J I I T P
H J I B J J H G I J
G I K F L H H G M K
E G J E H F G D J K
I M M F R J H G Q O


.

Odkud tedy šifrovaná zpráva může mı́t např. tvar:

”
GIFELFEFJIEIJFLFGELKJNNIUJIITP

HJIBJJHGIJGIKFLHHGMKEGJEHFGDJKIMMFRJHGQO“.

Poznámka: Jedná se o afinńı šifru se šifrováńım pomoćı matice a substitučńı

tabulky. Dešifrováńı by prob́ıhalo tak, že zašifrovaný text by byl vložen do nale-

zené matice typu 7×10 dle schéma horizontálńıho šifrováńı. Tuto matici označme

58



např. X. Následně by znaky v matici X byly substituovány za č́ısla (pomoćı sub-

stitučńı tabulky). Dále by bylo potřeba nalézt dešifrovaćı matici, která by byla ve

tvaru R−1 (předpokladem je, že známe šifrovaćı matici R). Tyto matice bychom

poté spolu vynásobili, tj. R−1 ·X, č́ımž bychom nalezli matici Y . Hodnoty z této

matice Y by bylo potom potřeba vypsat na řádek (opět dle schéma horizontálńıho

šifrováńı) a následně tento šifrovaný text substituovat dle tabulky Morseovy abe-

cedy. Tato tabulka Morseovy abecedy je obsažena v př́ıloze na konci tohoto textu.

Př́ıklad 3

Zadáńı: Zašifrujte text:

”
Podstata matematiky spoč́ıvá v jej́ı svobodě“ (Georg Cantor).

K šifrováńı použijte kĺıč R, který je ve tvaru:

R =

3 2 7
5 1 4
2 3 1


a substitučńı tabulka má tvar:

A Á B C Č D E Ě F G H I Í J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M N O P Q R S T U V W X Y Z
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Řešeńı: Text, který budeme šifrovat, bude ve tvaru:

”
PODSTATA MATEMATIKY SPOČÍVÁ V JEJÍ SVOBODĚ“,

nebot’ tabulka nezavád́ı malá ṕısmena. Nyńı můžeme ṕısmena substituovat za

č́ısla, tj.

”
19 18 5 22 23 0 23 0 30 16 0 23 6 16 0 23 11 14 28 30 22 19 18 4 12 25 1 30

25 30 13 6 13 12 30 22 25 18 2 18 5 7“.

Odtud dostáváme 12 matic typu 3× 1 (resp. 12 transponovaných vektor̊u, které

maj́ı právě 3 souřadnice). Nyńı tyto matice vynásob́ıme šifrovaćım kĺıčem R.
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3 2 7
5 1 4
2 3 1

 ·
19

18
5

 =

128
133
97

 ≡30

 8
13
7

 =

FJ
Ě


3 2 7

5 1 4
2 3 1

 ·
22

23
0

 =

112
133
113

 ≡30

22
13
23

 =

SJ
T


3 2 7

5 1 4
2 3 1

 ·
23

0
30

 =

279
235
76

 ≡30

 9
25
16

 =

G
V
M


...

Až bychom dostali zašifrovanou zprávu:

”
FJĚSJTGV M ZSVQMAGBCY O OÁGECZH Q V L SCXH Y MDÁHTCY“.

Poznámka: Jedná se o kombinaci afinńı a Hillovy šifry. Dešifrováńı by v tomto

př́ıpadě prob́ıhalo tak, že zašifrovaný text by bylo potřeba rozdělit na 12 trans-

ponovaných vektor̊u o 3 souřadnićıch. Tyto vektory bychom následně převedli

na č́ısla (pomoćı substitučńı tabulky). V daľśım kroku by bylo nutné nalézt

dešifrovaćı matici R−1. Následně by pak každý vektor byl násoben s touto matićı

R−1, tj. R−1 · ( #»x )T , č́ımž bychom dostali 12 matic typu 3 × 1, které by bylo

potřeba pomoćı substitučńı tabulky převést do symboliky znak̊u.

Př́ıklad 4

Zadáńı: Mějme zašifrovaný text
”

XKXTDXBTFGSN“. Dále uvažujme dešifro-

vaný text
”

KRYPTOGRAFIE“ a následuj́ıćı substitučńı tabulku:

Nalezněte šifrovaćı kĺıč a následně určete dešifrovaćı kĺıč.

Řešeńı: V prvńı řadě substituujeme znaky šifrovaného i dešifrovaného textu

pomoćı substitučńı tabulky za č́ısla.

”
XKXTDXBTFGSN“ =

”
16 10 16 0 22 16 18 0 3 24 19 7“

”
KRYPTOGRAFIE“ =

”
11 5 23 25 0 13 24 5 11 3 2 6“
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Obě slova maj́ı 12 znak̊u, takže maj́ı po substituci 12 č́ısel. Šifrovaćı matice bude

jistě typu 2 × 2, nebot’ 12 = 2 · 2 · 3 (kdyby šifrovaćı matice byla typu 3 × 3,

zbyla by nám 3 č́ısla, a kdyby matice byla 4 × 4, tak by nám 4 č́ısla chyběla).

Nyńı si muśıme uvědomit, že šifrovaćı matice je vždy
”
nalevo“ a také to, že č́ısla

můžeme zapsat jako transponované vektory, anebo jako čtvercové matice. T́ımhle

zp̊usobem bychom tedy dostali 6 transponovaných vektor̊u o 2 souřadnićıch (jiné

být nemohou), anebo 3 čtvercové matice řádu 2. Pokud bychom uvažovali čtver-

cové matice, museli bychom č́ısla zapisovat do matice po řádćıch. Nyńı je už jedno,

co zvoĺıme. Takže např. vezmeme čtvercové matice řádu 2, t́ım tedy dostaneme(
a c
b d

)
·
(

11 23
5 25

)
=

(
16 16
10 0

)
,

(
a c
b d

)
·
(

0 24
13 5

)
=

(
22 18
16 0

)
,

(
a c
b d

)
·
(

11 2
3 6

)
=

(
3 19
24 7

)
.

Nyńı využijeme definice součinu matic a d́ıky tomu źıskáme 3 soustavy lineárńıch

rovnic o 4 neznámých. Nám stač́ı vźıt pouze jednu soustavu (zbylé 2 muśı dát

stejný výsledek), tj.

11a+ 5c = 16,

23a+ 25c = 16,

11b+ 5d = 10,

23b+ 25d = 0.

Tuto soustavu lineárńıch rovnic vyřeš́ıme, č́ımž źıskáme řešeńı, které bude ve

tvaru {a, b, c, d} = {2;
25

16
;−6

5
;−23

16
}. T́ım jsme źıskali p̊uvodńı šifrovaćı matici

a nyńı se budeme zabývat hledáńım dešifrovaćı matice. Tu źıskáme tak, že k této

šifrovaćı matici vypoč́ıtáme matici inverzńı. 2 −6

5
1 0

25

16
−23

16
0 1

 ∼ · · · ∼

 1 0
23

16
−6

5

0 1
25

16
−2

 .
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Př́ıklad 5

Zadáńı: Mějme zašifrovaný text:

”
ÍOC.KQITIŽ P GOŘŽ Í GŽNHMŽWFDPJIÍ Č ÍŽU D“.

Šifrovaćı matice R je ve tvaru:

R =


2 1 3 5 1
1 2 5 1 3
4 7 0 2 4
5 8 1 6 2
1 0 3 5 0


a substitučńı tabulka má následuj́ıćı charakter:

A B C Č D E F G H I Í J K L M N
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O P Q Ř S T U V W X Y Ž . :
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Rozšifruje tuto zprávu.

Řešeńı: Dešifrovaćı matici šifrované zprávy budeme hledat ve tvaru R−1.
2 1 3 5 1 1 0 0 0 0
1 2 5 1 3 0 1 0 0 0
4 7 0 2 4 0 0 1 0 0
5 8 1 6 2 0 0 0 1 0
1 0 3 5 0 0 0 0 0 1

 ∼


1 0 3 5 0 0 0 0 0 1
0 2 2 26 3 0 1 0 0 29
0 7 18 12 4 0 0 1 0 26
0 8 16 11 2 0 0 0 1 25
0 1 27 25 1 1 0 0 0 28

 ∼


1 0 3 5 0 0 0 0 0 1
0 1 27 25 1 1 0 0 0 28
0 0 9 17 27 23 0 1 0 10
0 0 10 21 24 22 0 0 1 11
0 0 8 6 1 1 28 0 0 3

 ∼


1 0 3 5 0 0 0 0 0 1
0 1 27 25 1 1 0 0 0 28
0 0 1 11 26 25 29 1 0 7
0 0 0 1 4 12 10 20 1 1
0 0 0 8 3 8 9 22 0 7

 ∼


1 0 3 5 0 0 0 0 0 1
0 1 27 25 1 1 0 0 0 28
0 0 1 11 26 25 29 1 0 7
0 0 0 1 4 12 10 20 1 1
0 0 0 0 1 2 19 12 22 29

 ∼


1 0 3 5 0 0 0 0 0 1
0 1 27 25 0 29 11 18 8 29
0 0 1 11 0 3 15 19 28 3
0 0 0 1 0 4 24 2 3 5
0 0 0 0 1 2 19 12 22 29

 ∼
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
1 0 3 0 0 10 0 20 15 6
0 1 27 0 0 19 11 28 23 24
0 0 1 0 0 19 21 27 25 8
0 0 0 1 0 4 24 2 3 5
0 0 0 0 1 2 19 12 22 29

 ∼


1 0 0 0 0 13 27 29 0 12
0 1 0 0 0 16 14 19 8 18
0 0 1 0 0 19 21 27 25 8
0 0 0 1 0 4 24 2 3 5
0 0 0 0 1 2 19 12 22 29


Dešifrovaćı kĺıč je tedy ve tvaru:

R−1 =


13 27 29 0 12
16 14 19 8 18
19 21 27 25 8
4 24 2 3 5
2 19 12 22 29

 .

Zašifrovaný text substituujeme za č́ısla dle substitučńı tabulky, č́ımž źıskáme

šifrovaný text ve tvaru:

”
10 16 2 29 12 18 9 21 9 27 17 7 16 19 27 10 7 27 15 8 14 27 24 6 4 17 11 9 10

3 10 27 22 28 4“.

Tato č́ısla můžeme zapsat jako 7 transponovaných vektor̊u o 5 souřadnićıch, tedy
10
16
2
29
12

 ,


18
9
21
9
27

 ,


17
7
16
19
27

 ,


10
7
27
15
8

 ,


14
27
24
6
4

 ,


17
11
9
10
3

 ,


10
27
22
28
4

 .

Nyńı každý tento vektor vynásob́ıme s dešifrovaćı matićı R−1, tj.
13 27 29 0 12
16 14 19 8 18
19 21 27 25 8
4 24 2 3 5
2 19 12 22 29

 ·


10
16
2
29
12

 =


764
870
1401
575
1334

 ≡30


14
0
21
5
14

 =


M
A
T
E
M


...

Až nakonec dostaneme dešifrovaný text:

”
MATEMATIKA UČÍ: NEPŘEHLÍŽEJTE NULY.“ (Gabriel Laub).
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Poznámka: Jedná se o kombinaci afinńı a Hillovy šifry. Šifrováńı zprávy bylo

názorně předvedeno v př́ıkladu 3.

Př́ıklad 6

Zadáńı: Profesionálńı zvědi už nějakou dobu mapuj́ı terén ve válečné zóně. Jejich

ćılem je prolomit zašifrované zprávy nepř́ıtele. Jeden zvěd zjistil, že nepřátelé

k šifrováńı použ́ıvaj́ı jako kĺıč slovo
”

TRANSPORT“ a substitučńı tabulku, která

u počátečńıho symbolu A má index 3 a u koncového prázdného symbolu má

index 29. Dále zvěd zjistil, že indexy jsou uspořádány vzestupně a že tabulka

má 26 znak̊u. Při posledńım pátráńım se zvěd̊um podařilo naj́ıt ĺıstek s t́ımto

vzkazem:

”
984 307 1305 855 602 874 573 862 353

1072 405 1595 912 820 1125 490 1115 432

1148 425 1711 959 871 1225 520 1249 456“

Obrázek 14: Źıskaný ĺıstek se vzkazem

Pokuste se dešifrovat zprávu pomoćı zjǐstěných informaćı od profesionálńıch

zvěd̊u.

Řešeńı: Jistě budeme pracovat s tabulkou, kde počátečńı symbol je ṕısmeno A

s indexem 3 a tabulka konč́ı prázdným symbolem s indexem 29 a nav́ıc indexy

jsou uspořádány vzestupně, tj.

A B C D E F G H I J K L M N O
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P Q R S T U V W X Y Z
18 19 20 21 22 23 24 25 26 27 28 29

Šifrovaćı kĺıč po substituci bude ve tvaru
”

22 20 3 16 21 18 17 20 22“, z čehož

můžeme vytvořit šifrovaćı matici R, kde

R =

22 20 3
16 21 18
17 20 22

 .
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Z této šifrovaćı matice R źıskáme dešifrovaćı matici ve tvaru R−1, tedy

R−1 =
1

1213
·

102 −380 297
−46 433 −348
−37 −100 142

 .

Šifrovaný text vlož́ıme do matice tak, jak je zapsaný a vynásob́ıme jej s dešifrovaćı

matićı R−1, tj.

1

1213
·

102 −380 297
−46 433 −348
−37 −100 142

 ·
 984 307 1305 855 602 874 573 862 353

1072 405 1595 912 820 1125 490 1115 432
1148 425 1711 959 871 1225 520 1249 456



=

28 3 29 21 7 21 22 29 6
16 11 29 18 20 17 4 7 10
16 7 29 11 16 24 3 28 7


Č́ısla ve výsledné matici můžeme dle substitučńı tabulky substituovat zpět a do-

staneme dešifrovaný text:

”
ZA SEST DNI PROBEHNE INVAZE“,

č́ımž jsme prolomili šifru a zjistili, že profesionálńı zvědi měli správné informace.

Poznámka: Jedná se o afinńı šifru se šifrováńım pomoćı matice a substitučńı

tabulky. Šifrovaćı matice R je
”
schována“ ve slově

”
TRANSPORT“ (d́ıky čemuž

dokážeme vytvořit šifrovaćı matici řádu 3). Pokud bychom chtěli zprávy šifrovat,

bylo by potřeba převést otevřený text na matici 3 × m (popř. na sloupcové

vektory o 3 souřadnićıch). Šifrovaćı matici R bychom následně s touto matićı

3 × m (popř. s těmito sloupcovými vektory) vynásobili, č́ımž bychom dostali

zašifrovanou zprávu v č́ıselné podobě. Pokud by bylo potřeba zprávu reprezento-

vat znaky, mohli bychom využ́ıt substitučńı tabulky. Důležitým faktorem je, aby

př́ıjemce znal kĺıčové slovo, d́ıky kterému lze vytvořit dešifrovaćı matici R−1.

Př́ıklad 7

Zadáńı: Jednoho dne manžel v poštovńı schránce našel dopis, který byl pro

manželku a po neoprávněném otevřeńı našel tento vzkaz:
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Obrázek 15: Vzkaz v dopise

Manželovi to přǐslo zvláštńı, a proto jako každý žárlivý muž vše manželce vyčetl.

Žena mu poté řekla, že má tajného milence, se kterým si nějakou dobu dopisuje

a scháźı se. Dále mu prozradila, že zašifrovaný vzkaz nemá s Braillovým ṕısmem

nic společného, avšak samotná zpráva je t́ımto ṕısmem psána. Manžel zabrblal,

že je mu tato informace k ničemu, když nezná dešifrovaćı kĺıč. Vytočená žena

omylem prozradila, že dešifrovaćı kĺıč v sobě ukrývá 3 stejná č́ısla. Na závěr

dodala, že s milencem skonč́ı, pokud manžel šifru prolomı́ a vzkaz rozlušt́ı. Jak

má manžel postupovat, aby zachránil manželstv́ı?

Řešeńı: V prvńı řadě si doplńıme prázdná mı́sta např. pomlčkou, takže tajný

vzkaz bude vypadat následovně:

Obrázek 16: Vzkaz doplněný o pomlčky

Dále je potřeba si uvědomit, že mezi Braillovým ṕısmem a touto šifrou bude

určitě nějaký vztah. Každý znak v Braillově ṕısmě je zapsán do tabulky 3 × 2,

většinou symbolikou pomoćı tečky a pomlčky. Takže bychom text měli trochu

přeuspořádat a to následovně:

Obrázek 17: Přeuspořádaný vzkaz
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Tak, ted’ už to nevypadá tak strašidelně. Nyńı můžeme zavést substituci, např.

tečka = 1, pomlčka = 0. Pokud bychom každou šestici uzávorkovali, dostali

bychom následuj́ıćı matice:

Obrázek 18: Vzkaz jako matice

Nyńı si stač́ı uvědomit, že dešifrovaćı kĺıč muśı být ve tvaru čtvercové matice,

která splňuje následuj́ıćı podmı́nky:

1. Tato matice je řádu 3 a je regulárńı.

2. Tato matice je dešifrovaćı (tud́ıž je inverzńı k šifrovaćı matici).

3. Touto matićı lze vynásobit všechny matice, které jsme dostali po substituci.

4. Tato matice nemůže obsahovat jiná č́ısla než 0 a 1 (tedy tečky a pomlčky po

substituci) - kdyby obsahovala, nikdy bychom nedostali výsledné matice, které

by obsahovaly jen 1 a 0, takže by nebyl možný překlad Braillova ṕısma.

5. Tato matice obsahuje 3 stejná č́ısla.

Když všech těchto 5 podmı́nek dáme dohromady, pak je jasné, že dešifrovaćı

matice muśı být čtvercová matice řádu 3, která má na všech mı́stech bud’ 1 nebo 0,

přičemž plat́ı, že v matici budou bud’to tři jedničky a šest nul, anebo tři nuly

a šest jedniček. Možnost, kdy v matici bude šest jedniček a tři nuly, můžeme

hned zavrhnout, protože stač́ı uvažovat např.0 0 1
0 1 1
1 1 1

 ·
0 0

0 1
1 1

 =

1 1
1 2
1 2

 ,

0 0 1
1 0 1
1 1 1

 ·
0 0

0 1
1 1

 =

1 1
1 1
1 2

 , . . .

Vid́ıme, že i kdybychom vzali libovolnou čtvercovou matici řádu 3 se šesti jednič-

kami, která by splňovala všech 5 podmı́nek uvedených výše, potom by výsledná

matice v sobě obsahovala č́ıselné hodnoty 2 (nebo i 3), a to nemůže nastat (viz

bod 4). Z tohoto d̊uvodu nám zbylo pouze šest dešifrovaćıch matic a to tyto:
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1 0 0
0 1 0
0 0 1

 ,

0 0 1
0 1 0
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 .

Nyńı postupně každou z nich vynásob́ıme s výslednými maticemi (text po sub-

stituci). Pro prvńı čtvercovou matici 3× 3 dostaneme stejný text. Jak to vypadá

s daľśı čtvercovou matićı?0 0 1
0 1 0
1 0 0

 ·
0 0

0 1
1 1

 =

1 1
0 1
0 0


0 0 1

0 1 0
1 0 0

 ·
1 0

0 1
1 1

 =

1 1
0 1
1 0


...

Až bychom dostali tyto matice:1 1
0 1
0 0

 ,

1 1
0 1
1 0

 ,

1 0
0 1
0 0

 ,

0 1
1 0
1 0

 ,

1 0
1 0
1 1

 ,

1 0
1 1
0 0

 ,

1 0
0 0
1 1

 ,

1 1
0 0
1 0

 ,

1 0
1 0
0 1

 ,

což bychom převedli na tečky a pomlčky (návrat do substituce). Kdybychom měli

po ruce tabulku Braillova ṕısma, pod́ıvali bychom se, zda náhodou nějaké znaky

neodpov́ıdaj́ı př́ıslušným
”
matićım“. Zjistili bychom, že takovýto zápis nám dá

odpověd’:

”
DNES V 8 U MĚ“.

T́ım jsme prolomili šifru a smutnému manželovi zachránili manželstv́ı.

Poznámka: Na konci tohoto př́ıkladu je slovo matice v uvozovkách, protože se

nejedná o takové matice, jaké je známe, nýbrž o matice, ve kterých se vyskytuj́ı

jen pomlčky a tečky. Tabulka Braillova ṕısma je obsažena v př́ıloze na konci

tohoto textu.
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Př́ıklad 8

Zadáńı: Dešifrujte tuto zprávu:

”
671 6721 671 6732 671 792 803 6721 6765 825 220 770 550 6765 6721 825 704

220 6710 803 814 715 220 704 6743 220 737 792 671 814 825 6732 825 6710

759 2354 220 814 671 6721 220 6710 803 814 715 220 704 6765 792 671 693

759 220 671 220 6710 671 220 616 671 6765 803 6732 759 220 671 7810 220

803 715 6743 2332 693 715 814 6732 759 220 6743 6765 6710 759 220 682“,

když v́ıte, že k zašifrováńı zprávy byl použit jedenáctinásobek vektor̊u. Dále v́ıte,

že č́ısla byla zapsána hexadecimálně a byla použita ASCII tabulka pro šifrováńı.

Bohužel ale nev́ıte, v jakém pořad́ı byly vektory uspořádány.

Řešeńı: V prvńı řadě si spoč́ıtáme počet č́ısel v kódované zprávě a zjist́ıme, že

jich je 84. Těchto 84 č́ısel můžeme vyjádřit jako 7 vektor̊u o 12 souřadnićıch (nebo

také např. 14 vektor̊u o 6 souřadnićıch, atd.). Budeme tedy uvažovat kombinaci

7 vektor̊u o 12 souřadnićıch (i když nev́ıme v jakém pořad́ı byly tyto vektory

uspořádány). Takže dostáváme

#»u1 = (671 6721 671 6732 671 792 803 6721 6765 825 220 770),

#»u2 = (550 6765 6721 825 704 220 6710 803 814 715 220 704),

#»u3 = (6743 220 737 792 671 814 825 6732 825 6710 759 2354),

#»u4 = (220 814 671 6721 220 6710 803 814 715 220 704 6765),

#»u5 = (792 671 693 759 220 671 220 6710 671 220 616 671),

#»u6 = (6765 803 6732 759 220 671 7810 220 803 715 6743 2332),

#»u7 = (693 715 814 6732 759 220 6743 6765 6710 759 220 682).

Nyńı můžeme každý vektor vydělit 11, tj.

#»u1 = (61 611 61 612 61 72 73 611 615 75 20 70),

#»u2 = (50 615 611 75 64 20 610 73 74 65 20 64),

#»u3 = (613 20 67 72 61 74 75 612 75 610 69 214),

#»u4 = (20 74 61 611 20 610 73 74 65 20 64 615),

#»u5 = (72 61 63 69 20 61 20 610 61 20 56 61),
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#»u6 = (615 73 612 69 20 61 710 20 73 65 613 212),

#»u7 = (63 65 74 612 69 20 613 615 610 69 20 62).

Vı́me, že č́ısla byla zakódována hexadecimálně a tato č́ısla jsou ve tvaru: 0 1 2 3

4 5 6 7 8 9 10 A B C D E F, d́ıky čemuž můžeme vytvořit tabulku:

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dále v́ıme, že hexadecimálńı č́ısla v ASCII tabulce jsou zapsána jako dvouciferná

č́ısla, takže nyńı budeme substituovat posledńı 2 č́ıslice (u tř́ıciferných č́ısel) za

znaky A-F.

#»u1 = (61 6B 61 6C 61 72 73 6B 6F 75 20 70),

#»u2 = (50 6F 6B 75 64 20 6A 73 74 65 20 64),

#»u3 = (6D 20 67 72 61 74 75 6C 75 6A 69 2E),

#»u4 = (20 74 61 6B 20 6A 73 74 65 20 64 6F),

#»u5 = (72 61 63 69 20 61 20 6A 61 20 56 61),

#»u6 = (6F 73 6C 69 20 61 7A 20 73 65 6D 2C),

#»u7 = (63 65 74 6C 69 20 6D 6F 6A 69 20 62).

Dı́ky ASCII tabulce dostaneme následuj́ıćı vektory:

#»u1 = (a k a l a r s k o u p),

#»u2 = (P o k u d j s t e d),

#»u3 = (m g r a t u l u j i .),

#»u4 = ( t a k j s t e d o),

#»u5 = (r a c i a j a V a),

#»u6 = (o s l i a z s e m ,),

#»u7 = (c e t l i m o j i b).

A při vhodném přeuspořádáńı těchto vektor̊u dostáváme text:

”
Pokud jste dosli az sem, tak jste docetli

moji bakalarskou praci a ja Vam gratuluji.“

Poznámka: Jedná se o transpozičńı šifru. Šifrováńı bylo názorně předvedeno

v př́ıkladu 1. Šifrovaćı kĺıč je ve tvaru r = #»u2 ~
#»u6 ~

#»u4 ~
#»u7 ~

#»u1 ~
#»u5 ~

#»u3.
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Závěr

Během realizace předkládané práce jsem nastudoval tři oblasti matematiky,

jež maj́ı bĺızký vztah k teoretické informatice. Na základě těchto źıskaných te-

oretických poznatk̊u jsem vytvořil tuto práci. Nejdř́ıve jsem vymyslel zadáńı

př́ıklad̊u z kryptografie, poté z teorie graf̊u a nakonec z teorie kódováńı. Během

výpočt̊u jsem bádal r̊uzně po internetu a inspiroval se v odborné literatuře.

Př́ıklady jsem postupně jeden po druhém po čase vyřešil. Při výpočtech jsem

velmi hojně využ́ıval internetovou stránku https://matrixcalc.org/cs/, která

je velmi silným nástrojem, např. k výpočtu determinantu matice vyšš́ıho řádu.

Po dokončeńı praktické části této bakalářské práce jsem začal zpracovávat teo-

retickou část, která by měla pomoct pochopit řešené př́ıklady a postupy k jejich

řešeńı. Po sepsáńı všech poznámek jsem text vysázel v prostřed́ı LATEX.

Výsledkem této bakalářské práce je řešená sb́ırka úloh speciálńıch aplikaćı

lineárńı algebry v teoretické informatice. Konkrétně tedy úloh z již zmı́něné teorie

graf̊u, teorie kódováńı a kryptografie. Tato řešená sb́ırka úloh by měla prohlou-

bit znalosti váženého čtenáře z lineárńı algebry ve třech uvedených oblastech.

Předpokladem pro porozuměńı tomuto textu byla jistá zkušenost čtenáře s teo-

retickou informatikou a předevš́ım tedy s lineárńı algebrou.
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http://math.feld.cvut.cz/demlova/teaching/avt/celek-a9.pdf
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