Počet záznamů: 1  

Modeling self-heating effects in nanoscale devices

  1. Údaje o názvuModeling self-heating effects in nanoscale devices / K. Raleva, A.R. Shaik, D. Vasileska, S.M. Goodnick. [elektronický zdroj]
    NakladatelSan Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017]
    DistributorBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017]
    Fyz.popis1 online resource (various pagings) : illustrations (some color).
    ISBN9781681741239 (online)
    9781681742519 mobi
    Edice[IOP release 3]
    IOP concise physics, ISSN 2053-2571
    Poznámka"Version: 20170801"--Title page verso.
    "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso.
    Poznámky o skryté bibliografii a rejstřícíchIncludes bibliographical references.
    Úplný obsahPreface -- 1. Introduction -- 1.1. Some general aspects of heat conduction -- 1.2. Solution of the self-heating problem -- 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO
    Poznámka o obsahu2. Current state of the art in modeling heating effects in nanoscale devices -- 2.1. Some general considerations about the solution of the heat transport problem in devices -- 2.2. Solving lattice heating problem in nanoscale devices -- 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration) -- 2.4. Conclusions. 3. Phonon Monte Carlo simulation -- 3.1. Phonon-phonon scattering -- 3.2. Monte Carlo simulation procedure -- 3.3. Verification of Monte Carlo code -- 3.4. Phonon Monte Carlo results -- 3.5. Conclusions. 4. Summary -- 4.1. The choice of proper thermal boundary conditions -- 4.2. Thermal conductivity model currently used in the simulator -- 4.3. Multiscale modeling of device + interconnects -- 4.4. Phonon Monte Carlo need and its necessary improvements -- Appendix A. Derivation of energy balance equations for acoustic and optical phonons.
    Poznámky k dostupnostiPřístup pouze pro oprávněné uživatele
    Určeno proResearchers in semiconductor physics and materials, nanoscience and engineering, solid state electronics.
    PoznámkyZpůsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader, EPUB reader. or Kindle reader.
    Dal.odpovědnost Shaik, Abdul Rawoof,
    Vasileska, Dragica,
    Goodnick, Stephen M. (Stephen Marshall), 1955-
    Dal.odpovědnost Morgan & Claypool Publishers,
    Institute of Physics (Great Britain),
    Předmět.hesla Nanoelectromechanical systems - Thermal properties. * Heat - Transmission. * Electronic devices & materials. * TECHNOLOGY & ENGINEERING / Electrical.
    Forma, žánr elektronické knihy electronic books
    Země vyd.Kalifornie
    Jazyk dok.angličtina
    Druh dok.Elektronické knihy
    URLPlný text pro studenty a zaměstnance UPOL
    kniha

    kniha


    Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.

    Preface -- 1. Introduction -- 1.1. Some general aspects of heat conduction -- 1.2. Solution of the self-heating problem -- 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO2. Current state of the art in modeling heating effects in nanoscale devices -- 2.1. Some general considerations about the solution of the heat transport problem in devices -- 2.2. Solving lattice heating problem in nanoscale devices -- 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration) -- 2.4. Conclusions3. Phonon Monte Carlo simulation -- 3.1. Phonon-phonon scattering -- 3.2. Monte Carlo simulation procedure -- 3.3. Verification of Monte Carlo code -- 3.4. Phonon Monte Carlo results -- 3.5. Conclusions4. Summary -- 4.1. The choice of proper thermal boundary conditions -- 4.2. Thermal conductivity model currently used in the simulator -- 4.3. Multiscale modeling of device + interconnects -- 4.4. Phonon Monte Carlo need and its necessary improvements -- Appendix A. Derivation of energy balance equations for acoustic and optical phonons.

Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.