Počet záznamů: 1
Modeling self-heating effects in nanoscale devices
Údaje o názvu Modeling self-heating effects in nanoscale devices / K. Raleva, A.R. Shaik, D. Vasileska, S.M. Goodnick. [elektronický zdroj] Nakladatel San Rafael [California] (40 Oak Drive, San Rafael, CA, 94903, USA) : Morgan & Claypool Publishers, [2017] Distributor Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2017] Fyz.popis 1 online resource (various pagings) : illustrations (some color). ISBN 9781681741239 (online) 9781681742519 mobi Edice [IOP release 3] IOP concise physics, ISSN 2053-2571 Poznámka "Version: 20170801"--Title page verso. "A Morgan & Claypool publication as part of IOP Concise Physics"--Title page verso. Poznámky o skryté bibliografii a rejstřících Includes bibliographical references. Úplný obsah Preface -- 1. Introduction -- 1.1. Some general aspects of heat conduction -- 1.2. Solution of the self-heating problem -- 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO Poznámka o obsahu 2. Current state of the art in modeling heating effects in nanoscale devices -- 2.1. Some general considerations about the solution of the heat transport problem in devices -- 2.2. Solving lattice heating problem in nanoscale devices -- 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration) -- 2.4. Conclusions. 3. Phonon Monte Carlo simulation -- 3.1. Phonon-phonon scattering -- 3.2. Monte Carlo simulation procedure -- 3.3. Verification of Monte Carlo code -- 3.4. Phonon Monte Carlo results -- 3.5. Conclusions. 4. Summary -- 4.1. The choice of proper thermal boundary conditions -- 4.2. Thermal conductivity model currently used in the simulator -- 4.3. Multiscale modeling of device + interconnects -- 4.4. Phonon Monte Carlo need and its necessary improvements -- Appendix A. Derivation of energy balance equations for acoustic and optical phonons. Poznámky k dostupnosti Přístup pouze pro oprávněné uživatele Určeno pro Researchers in semiconductor physics and materials, nanoscience and engineering, solid state electronics. Poznámky Způsob přístupu: World Wide Web.. Požadavky na systém: Adobe Acrobat Reader, EPUB reader. or Kindle reader. Dal.odpovědnost Shaik, Abdul Rawoof, Vasileska, Dragica, Goodnick, Stephen M. (Stephen Marshall), 1955- Dal.odpovědnost Morgan & Claypool Publishers, Institute of Physics (Great Britain), Předmět.hesla Nanoelectromechanical systems - Thermal properties. * Heat - Transmission. * Electronic devices & materials. * TECHNOLOGY & ENGINEERING / Electrical. Forma, žánr elektronické knihy electronic books Země vyd. Kalifornie Jazyk dok. angličtina Druh dok. Elektronické knihy URL Plný text pro studenty a zaměstnance UPOL kniha
Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.
Preface -- 1. Introduction -- 1.1. Some general aspects of heat conduction -- 1.2. Solution of the self-heating problem -- 1.3. Modeling heating effects in state of the art devices with the commercial tool SILVACO2. Current state of the art in modeling heating effects in nanoscale devices -- 2.1. Some general considerations about the solution of the heat transport problem in devices -- 2.2. Solving lattice heating problem in nanoscale devices -- 2.3. Multi-scale modeling--modeling of circuits (CS and CD configuration) -- 2.4. Conclusions3. Phonon Monte Carlo simulation -- 3.1. Phonon-phonon scattering -- 3.2. Monte Carlo simulation procedure -- 3.3. Verification of Monte Carlo code -- 3.4. Phonon Monte Carlo results -- 3.5. Conclusions4. Summary -- 4.1. The choice of proper thermal boundary conditions -- 4.2. Thermal conductivity model currently used in the simulator -- 4.3. Multiscale modeling of device + interconnects -- 4.4. Phonon Monte Carlo need and its necessary improvements -- Appendix A. Derivation of energy balance equations for acoustic and optical phonons.
Počet záznamů: 1