Počet záznamů: 1  

Scaling machine learning with Spark

  1. Údaje o názvuScaling machine learning with Spark : distributed ML with MLlib, TensorFlow, and PyTorch / Adi Polak
    Osobní jméno Polak, Adi (autor)
    Údaje o vydáníFirst edition
    NakladatelBeijing ; Boston ; Farnham ; Sebastopol ; Tokyo : O'Reilly, 2023
    Fyz.popisxix, 270 stran : ilustrace ; 24 cm
    ISBN978-1-0981-0682-9 (brožováno)
    PoznámkaObsahuje rejstřík
    Předmět.hesla otevřený software open source software * frameworky software frameworks * big data big data * zpracování dat data processing * učící se systémy learning systems * strojové učení machine learning * Apache (software) Apache (software)
    Forma, žánr příručky handbooks and manuals
    Konspekt004.4/.6 - Programování. Software
    MDT 004.42 , 004.6-022.257 , 004.62 , 004.85 , 004.42Apache , 004.4.057.8 , (035)
    Země vyd.Čína ; Spojené státy americké ; Velká Británie ; Japonsko
    Jazyk dok.angličtina
    Druh dok.Knihy
    SignaturaČár.kódLokaceDislokaceInfo
    820:030/409 (KUP)3139327365ZbrojniceÚstřední knihovna UP - technika a průmyslpouze prezenčně
    Scaling machine learning with Spark

    "Learn how to build end-to-end scalable machine learning solutions with Apache Spark. With this practical guide, author Adi Polak introduces data and ML practitioners to creative solutions that supersede today's traditional methods. You'll learn a more holistic approach that takes you beyond specific requirements and organizational goals--allowing data and ML practitioners to collaborate and understand each other better. Scaling machine learning with Spark examines several technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLflow, TensorFlow, and PyTorch. If you're a data scientist who works with machine learning, this book shows you when and why to use each technology. You will: Explore machine learning, including distributed computing concepts and terminology ; Manage the ML lifecycle with MLflow ; Ingest data and perform basic preprocessing with Spark ; Explore feature engineering, and use Spark to extract features ; Train a model with MLlib and build a pipeline to reproduce it ; Build a data system to combine the power of Spark with deep learning ; Get a step-by-step example of working with distributed TensorFlow ; Use PyTorch to scale machine learning and its internal architecture."--Nakladatelská anotace

Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.