Počet záznamů: 1  

Applied longitudinal data analysis for epidemiology

  1. Údaje o názvuApplied longitudinal data analysis for epidemiology : a practical guide / Jos W.R. Twisk, Department of Epidemiology and Biostatistics, Medical Center and the Department of Health Sciences of the Vrije Universteit, Amsterdam.
    Údaje o vydáníSecond edition.
    NakladatelCambridge : Cambridge University Press, 2013.
    Fyz.popis1 online resource (xiv, 321 pages) : digital, PDF file(s).
    ISBN9781139342834 (ebook)
    PoznámkaTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
    Poznámka o obsahuMachine generated contents note: Preface; Acknowledgements; 1. Introduction; 2. Study design; 3. Continuous outcome variables; 4. Continuous outcome variables - relationships with other variables; 5. The modelling of time; 6. Other possibilities for modelling longitudinal data; 7. Dichotomous outcome variables; 8. Categorical and 'count' outcome variables; 9. Analysis data from experimental studies; 10. Missing data in longitudinal studies; 11. Sample size calculations; 12. Software for longitudinal data analysis; 13. One step further; References; Index.
    Poznámky k dostupnostiPřístup pouze pro oprávněné uživatele
    Předmět.hesla Epidemiology - Research - Statistical methods. * Epidemiology - Longitudinal studies. * Epidemiology - Statistical methods.
    Forma, žánr elektronické knihy electronic books
    Země vyd.Anglie
    Jazyk dok.angličtina
    Druh dok.Elektronické knihy
    URLPlný text pro studenty a zaměstnance UPOL
    kniha

    kniha


    This book discusses the most important techniques available for longitudinal data analysis, from simple techniques such as the paired t-test and summary statistics, to more sophisticated ones such as generalized estimating of equations and mixed model analysis. A distinction is made between longitudinal analysis with continuous, dichotomous and categorical outcome variables. The emphasis of the discussion lies in the interpretation and comparison of the results of the different techniques. The second edition includes new chapters on the role of the time variable and presents new features of longitudinal data analysis. Explanations have been clarified where necessary and several chapters have been completely rewritten. The analysis of data from experimental studies and the problem of missing data in longitudinal studies are discussed. Finally, an extensive overview and comparison of different software packages is provided. This practical guide is essential for non-statisticians and researchers working with longitudinal data from epidemiological and clinical studies.

    Machine generated contents note: Preface; Acknowledgements; 1. Introduction; 2. Study design; 3. Continuous outcome variables; 4. Continuous outcome variables - relationships with other variables; 5. The modelling of time; 6. Other possibilities for modelling longitudinal data; 7. Dichotomous outcome variables; 8. Categorical and 'count' outcome variables; 9. Analysis data from experimental studies; 10. Missing data in longitudinal studies; 11. Sample size calculations; 12. Software for longitudinal data analysis; 13. One step further; References; Index.

Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.