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na silničńıch komunikaćıch v České republice. Efektivita metody KDE+ záviśı
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2



BIBLIOGRAPHICAL IDENTIFICATION

Author: Richard Andrášik
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Introduction

The aim of any society should be to prevent traffic crashes (TCs) and reduce

the severity of their consequences. From the point of view of a road administrator,

precise identification of hazardous places (hotspots) within a road network is an

essential tool for applying mitigation measures. However, standard methods of

hazardous places identification only take into account aggregated data. They

evaluate the safety of a road section as a whole [17, 21] or test the general tendency

to form clusters on a particular road section [24, 32].

The identification of hazardous locations on roads has substantially progressed

during the last years. It has been facilitated by both the application of geographic

information systems (GIS) into transportation research and by the possibility of

precise localization of TCs through the use of GPS devices. Nowadays, many

traffic-crash databases contain the precise locations of the TCs and therefore it

is no longer necessary to detect hazardous road locations from aggregated data

[14, 16, 20, 32]. Having these accurate positions of the TCs, we are able to focus

on the precise identification of spatial patterns of TCs.

In general, there are three types of methods for hotspots identification. The

most straightforward approach is based on aggregated counts of records. The

sums are either used directly to rank segments of roads, or the local spatial au-

tocorrelation statistic (local Getis Ord statistic) is computed. The latter option

seems better because it allows for setting an objective threshold for distinguish-

ing significantly dangerous locations. However, these methods have several draw-

backs: segmentation of roads, not considering the regression to the mean and

aggregation when exact positions of TCs are known.
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Second, various regression models are often built to analyze crash-frequency

data. They express the number of TCs by the use of explanatory variables [15].

However, there are many methodological issues which have to be addressed prior

to the application of this approach (e. g. time-varying explanatory variables,

under-reporting, low sample mean and sample size, omitted variables, disunity

in the choice of a functional form, segmentation of roads). Hence, regression

analyzes are time-consuming in the case of crash-frequency data and often pro-

duce biased results [21]. The empirical Bayes method [10] uses the results from

a regression model as the prior estimate of expected crash-frequency counts. Af-

terwards, the prior information is combined with the real data and the posterior

estimate is produced. Although this is a brilliant idea, the accuracy of the em-

pirical Bayes method depends on the prior estimates produced by a regression

model. Furthermore, this approach gives no objective threshold for distinguishing

significantly hazardous locations.

Since hazardous road locations are places with a significantly high number of

TCs due to local factors connected to the location [11], also clustering analysis

can be used to find locations where TCs occur more frequently than expected.

Clustering methods can

• either testify a general tendency of clustering on a road section; for instance

K-function method [24, 32] and nearest-neighbor methods [22, 29]

• or identify exact positions of hotspots within a road section; for example

the Kernel density estimation (KDE) method [27], Clumping method [22].

The methods from the first group do not contribute to the localization of clus-

ters within sections. The latter methods are more efficient as they provide the

information of this type.

We focused on the KDE method and its application to the spatial analysis of

TCs. One advantage of the KDE method compared to other clustering methods

is that the uncertainty about the exact position of the TCs is expressed by the

bandwidth of the kernel – this means something like spreading the risk of a traffic
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crash [1].

Since the estimated probability density function is a multimodal function in

general, it has more local maximums where clusters can be found. Therefore,

it is necessary to determine which ones are statistically significant. Currently,

a comprehensive investigation of statistical significance of clusters identified by

the KDE method is missing in the literature and the KDE suits better for vi-

sualization purposes than for identification of hotspots [26]. The same problem

was noticed also by Xie and Yan [31]. They wrote that ”... the absence of the

significance testing is a drawback of the KDE”. Anderson [1] mentioned the same

problem: ”However one main drawback (of the KDE method) reoccurs, which

relates to determining the statistical significance of the resulting clusters. This

is an area of research which is something to investigate in further studies”.

We aim on presenting an improved procedure of cluster detection, based on

the standard KDE method, suitable to identify the most hazardous road loca-

tions by testing the significance of the clusters followed by the ordering of the

most hazardous places. This procedure is described in chapter 2. We present

also further developments of the KDE+ method in chapter 3, particularly the

applicability to non-precisely located data.

In addition, TCs on the Czech roads were analyzed with the use of the novel

KDE+ method. We performed the analysis of four databases: TCs without

distinction (all TCs), single-vehicle TCs, two-vehicles TCs, TCs with severe injury

or death. The obtained results are described in chapter 4. Analyzes of other

databases (e. g. wet-road collisions, animal-vehicle collisions) are visualized in

the web-map applications www.kdebourame.cz and www.srazenazver.cz.

This rigorous thesis is based on the following published papers:

• B́ıl, M., Andrášik, R., Janoška, Z.: Identification of hazardous road lo-

cations of traffic accidents by means of kernel density estimation and clus-

ter significance evaluation, Accident Analysis & Prevention 55, 265 – 273

(2013).
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• Andrášik, R., B́ıl, M.: Traffic accidents: Random or pattern occurence?,

Safety and Reliability of Complex Engineered Systems – Podofillini et al.

(Eds), 3 – 6, Taylor & Francis Group, London, ISBN 978-1-138-02879-1

(2015).

• B́ıl, M., Andrášik, R., Sedońık, J., Svoboda, T.: The KDE+ software:

a tool for effective identification and ranking of animal-vehicle collision

hotspots along networks, Landscape Ecology 31(2), 231 – 237 (2016).

• Andrášik, R., B́ıl, M.: Traffic accident hotspots: Identifying the boundary

between the signal and the noise. Risk, Reliability and Safety: Innovating

Theory and Practice – Walls et al. (Eds), 1634 – 1637, Taylor & Francis

Group, London, ISBN 978-1-138-02997-2 (2016).
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Chapter 1

Data

The Czech road network is approximately 37,469 km in length excluding the

urban roads. The data on TCs comes from the Czech Police database. This

database consists of 90,418 entries which were recorded over the period 2009 –

2013. Such a time span is sufficient because there are enough records and the

characteristics of the traffic remain relatively unchanged [8, 11]. We excluded

TCs which occurred at intersections because they could hide the existence of

a dangerous location within a section [7]. These TCs did not have to be excluded

in order to perform the analysis. However, intersections are typically dangerous

places by definition. Therefore, we focused on finding dangerous locations within

road sections, i. e. between intersections.

In our case, each TC was localized by a police officer by the use of a GPS

device. The Police used the Garmin Geko 201 device which is able to localize

a point (without additional EGNOS/WAAS corrections) with a maximum error

up to 25 m [9]. If the measurement of a TC position is not taken at the exact

place where the TC occurred, another error may arise. The police officer some-

times gathered the locations of the TCs, for the sake of their personal safety, at

the side of the road. The maximum width of a road in available database was

25 m. Therefore the maximum expected error which may arise from the process

of traffic-crash data capturing accounts for 50 m. Hence, the minimum kernel

bandwidth, in our case, should not be shorter than the above specified length.

Our proposed approach can be applied to any point (or interval) data situ-

11



ated on a network. We can consider TCs in general, animal-vehicle collisions in

particular or even records on roadkills. To demonstrate the performance of our

method, we analyzed four databases. Initially, we applied the proposed method

to the database of TCs without distinction. Consequently, we performed the

analysis in three specific groups of TCs: single-vehicle TCs, two-vehicles TCs

and TCs with severe injury or death (see Figure 1.1).

Figure 1.1: TCs in the Czech Republic in the period 2009 – 2013.

TCs with severe injury or death are naturally of a special concern. Although

the number of TCs slightly increased from 2011 to 2013, the proportion of TCs

with severe injury or death in relation to all TCs fell from 7.2% to 5.2% over this

period (see Figure 1.2).

The road network data were obtained from the Road and Motorway Direc-

torate (RMD). The analyzes were performed on primary roads excluding the

highways. We also omitted the urban areas, because the RMD data does not

contain the complete urban network. The road network was separated into road

sections, which did not contain any intersections. We define a road section as

12



a segment of a road network between two intersections and this definition is used

throughout this text.

Figure 1.2: Number of TCs over the period 2009 – 2013 (excluding the urban
network and intersections) and the proportion of TCs with severe injury or death
in relation to all TCs.
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Chapter 2

Kernel density estimation

To identify the hazardous locations, we used the KDE which is enriched by

a statistical testing procedure to find the significant clusters of TCs and by a clus-

ter ranking procedure. These additional steps were developed to overcome the

drawbacks of the KDE method (see Introduction).

Methods like the KDE are usually defined as planar methods, while TCs are

bound to the network, which is not a two-dimensional space. Some authors,

however, ignored this fact and their results are therefore biased [12, 27].

This limitation can be overcome by using the network variant of the KDE

[23, 31]. This approach is, however, not suitable in traffic-crash analyzes, because

the use of the network variant of the KDE (or any other method) needs to reflect

additional data like annual average daily traffic (or other estimates of the traffic

flow). The reason comes from the fact, that the number of TCs depends on the

intensity of the traffic and therefore they have to be weighted by a factor to

get comparable results. The task is even more complicated, because the relation

among the TCs and the daily traffic is not linear [18, 27].

Therefore, the preferred approach, when working with TCs, is to separate the

road network into road sections and use the KDE in the one-dimensional space.

Using the road sections, we do not require consideration of the effect of the annual

average daily traffic, because the traffic remains constant within each section.

Let us briefly describe the KDE method. The KDE method depends on two

parameters: the type of a kernel function and the bandwidth. First, the type of
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a kernel function is selected. A univariate kernel function, denoted by K(x), is

a real-valued integrable function satisfying:

• K(x) ≥ 0, ∀x ∈ R,

•
+∞∫
−∞

K(x)dx = 1,

•
+∞∫
−∞

xK(x)dx = 0.

Usually, the kernel function is an even probability density function [13]. In our

research we used the Epanechnikov kernel (Figure 2.1). Many other shapes of

the kernel could be selected such as rectangular, triangle or Gaussian.

Figure 2.1: A comparison of the Epanechnikov and Gaussian kernels. The
Epanechnikov kernel has bounded support. On the other hand, the Gaussian
kernel tends asymptotically to zero for x going to ±∞ and its support is un-
bounded.
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The kernel shape itself does not have a substantial impact on the results

when compared with the bandwidth [4, 31]. However, the shape of the kernel

should reflect the range of the uncertainty of the real position of a TC. In the

case of the Gaussian kernel, which has, from its definition, unbounded support,

the uncertainty expands to the whole section and beyond. This is not realistic

and the uncertainty extent should be narrowed. Furthermore, the Epanechnikov

kernel minimizes the asymptotic mean integrated squared error [19] defined as:

AMISE(f̂) =
1

nd

+∞∫
−∞

K(x)2 dx+
1

4
d4

+∞∫
−∞

x2K(x) dx

+∞∫
−∞

[f ′′(x)]2 dx, (2.1)

where f̂ is the estimated probability density function, f stands for the underlying

original probability density function, d > 0 is the bandwidth and n ∈ N denotes

the number of TCs within the road section. The Epanechnikov kernel is defined

as follows:

Kd(x) =
3

4d

(
1−

(x
d

)2)
I(−d,d)(x), (2.2)

where I(−d,d)(x) is the indicator function on the interval (−d, d).

Secondly, we choose the bandwidth of the kernel. In general, the bandwidth

is chosen in order to minimize (2.1) with respect to d [19]. Concerning the KDE

method for TCs, the bandwidth choice is dependent on the character of the traffic

(maximum speed of vehicles and visibility range). Commonly used bandwidths

start at 50 m when applied in urban areas [30] and go up to 500 m in highway

segments [12]. In our case we chose a 100 m long bandwidth. This value is

reasonable for rural roads with respect to breaking distance and visibility range.

After setting the parameters, the KDE can be computed as a sum of the kernel

functions (Figure 2.2), where modal points are locations of TCs. The KDE is

defined as:

f̂(x) =
1

n

n∑
i=1

Kd(x−Xi), (2.3)

where Xi ∈ (0, L), i = 1, . . ., n, are the locations of the TCs, n ∈ N is the

16



number of TCs within the road section and L > 0 is the length of the road

section. Obviously, the area below the resulting density curve is equal to one,

because it is a density function.

Figure 2.2: An example of the KDE (blue curve). Blue dots stand for the locations
of the TCs. The threshold for significant clusters is unknown.

Naturally, the KDE method results in many clusters located at points of local

maximums of the KDE. Therefore, the following steps are necessary:

1. Objectively determine the threshold for statistically significant clusters.

2. Select the significant clusters.

3. Order the significant clusters.

We improved the procedure of cluster detection, based on the standard KDE

method, by testing the significance of the clusters (see section 2.1) followed by

the ordering of the clusters (see section 2.2). Furthermore, we tested accuracy

and stability of our approach (see sections 2.3 and 2.4) and we compared our

method to other methods which were recently used in cluster analyzes of TCs

(see section 2.5). Finally, we prepared a stand-alone application and toolbox for

ArcGIS to allow the use of our approach also to other researchers (see section 2.6).
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2.1. Testing the significance

At this point the common application of the KDE usually ends. Clusters

are identified at places of local maximums of the kernel function. Sometimes

an arbitrary threshold is determined [12]. However, we aim on determining the

significance of a cluster more objectively.

If there is a spatial pattern of TCs on a particular road section, the distribution

of TCs would have to be distinguishable from the uniform distribution. Therefore,

our procedure follows by stating the null hypothesis:

H0: ”The TCs are distributed randomly along the road section according to the

uniform distribution on the interval (0, L)”,

where L > 0 is the length of the road section. If H0 is rejected, we found a spatial

pattern of TCs and hotspots can be identified. Otherwise, we cannot distinguish,

whether there is any spatial pattern of TCs or not, and TCs were likely caused

by a spatially random process. Statistical test of the null hypothesis is based

on the Monte Carlo (MC) method, which uses repeated random simulations to

determine properties of a problem in question.

Let us make the following notation:

h, H – thresholds

f̂(x) – the probability density function of TCs estimated
by the use of the KDE method,

L – the length of a road section,
n – the number of TCs on the road section,
M – the number of MC simulations.

Hotspots are located at places where function f̂(x) is significantly greater than

the probability density function of the uniform distribution. In other words, we

have to objectively determine the threshold expressing the significant difference

between f̂(x) and the probability density function of the uniform distribution.

Statistical test can be performed either from a local perspective (”local” test) or

from a global perspective (”global” test). We apply the both tests simultaneously
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taking the local test as the primary test. The global test is performed for its in-

formative value. The details concerning these two tests are given in sections 2.1.1

and 2.1.2.

2.1.1. Local test

The local test examines the values of f̂(x), x ∈ (0, L), pointwise and compares

them to the values of the uniform probability density function 1/L. We set the

significance level as α = 5%. The local test can be carried out by the use of the

MC method in the following way (see Figure 2.3):

1. We choose n points by random form the uniform distribution on the interval

(0, L). The probability density function of this distribution is 1/L on the

interval (0, L) and zero otherwise.

2. We calculate the KDE of the randomly chosen points in step 1.

We perform a sufficient number of repetitions of steps 1 – 2. Consequently, we

arrive at M probability density functions estimated by the KDE method. Let us

denote them as g1(x), g2(x), . . ., gM(x).

3. The 95% quantile of g1(x), g2(x), . . ., gM(x) is calculated at each point

x0 ∈ (0, L). We denote this quantile as q(x0).

4. The threshold is determined as the mean value of q(x), x ∈ (0, L). More

specifically,

h =
1

L

∫ L

0

q(x) dx

5. Finally, we arrive at significant clusters which are located at places with

f̂(x) > h. If there exists at least one significant cluster, we reject the null

hypothesis.

The main advantage of this local approach is the simple localization of the

clusters. In addition, we are able to measure the degree of violation of the null
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Figure 2.3: An example of the local test. The blue line shows the estimated
probability density function of the underlying TCs. The gray lines represent
KDEs of uniformly distributed data (the Monte Carlo method). The horizontal
red line is the threshold (95th percentile level). In places, where the blue line is
above the threshold, a significant cluster is identified.

hypothesis at each point within the road section. This feature facilitates the

ordering of the significant clusters (see section 2.2). Due to these reasons, we

further use the local test as the primary significance test for identifying and

localizing the significant clusters.

The existence of at least one cluster within a road section is determined by

the existence of x0 ∈ (0, L) such that f̂(x0) > h. Since the significance level α is

set for each particular point x0 ∈ (0, L), which means that

P (f̂(x0) > h|H0) = α,

we get

P (∃x0 ∈ (0, L) : f̂(x0) > h|H0) > α.

Hence, the probability of type I error is likely higher than the predefined signifi-

cance level α and we can expect a higher false alarm rate.

2.1.2. Global test

The global test examines, whether there is a clustering on the particular

road section. It compares the maximum value of f̂(x) to the maximum value of
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the uniform probability density function, i. e. to the 1/L. Again, we set the

significance level α = 5%. The first two steps of the global test are the same as

for the local test. The whole procedure is performed as follows (see Figure 2.4):

1. We choose n points by random from the uniform distribution on the interval

(0, L). The probability density function of this distribution is 1/L on the

interval (0, L) and zero otherwise.

2. We calculate the KDE of the randomly chosen points in step 1 and remem-

ber the maximum value.

We perform a sufficient number of repetitions of steps 1 – 2. Consequently, we

arrive at M maximums. Let us denote them as m1, m2, . . ., mM .

Figure 2.4: An example of the global test. The blue line shows the estimated
probability density function of the underlying TCs. The gray lines represent
KDEs of uniformly distributed data (the Monte Carlo method). The horizontal
red line is the threshold (95th percentile level). In places, where the blue line is
above the threshold, a significant cluster is identified.

3. The threshold H is determined as the 95th percentile of maximums m1, m2,

. . ., mM .

4. If there exists x0 ∈ (0, L) such that f̂(x0) > H, we reject the null hypothe-

sis. In other words, the null hypothesis is rejected if maxx∈(0,L) f̂(x) > H.
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Significant clusters are located at places where f̂(x) > H, x ∈ (0, L), and

in their neighborhood.

Since

P ( max
x∈(0,L)

f̂(x) > H|H0) = α,

we conclude that the global test has lower false alarm rate than the local test.

On the other hand, the miss rate of the global test is higher than in the local

test, because H > h. In addition, the exact localization of the significant clusters

is uncertain when using only the global test. Therefore, we apply the global test

only for its informative value. The information obtained from the global test can

be used to reduce the false alarm rate in the local test.

2.2. Cluster strength

Applying the proposed method, it is possible to determine which clusters

within a road section are statistically significant (see Figure 2.3). Furthermore,

we can determine the degree of significance for each cluster which allows us to

compare the clusters among themselves. We call it a cluster strength. It is defined

as a ratio between the maximum of f̂(x) within the cluster (denoted as f̂max) and

the value of that maximum (see Figure 2.5), more specifically (f̂max − h)/f̂max.

According to this definition, it holds that the cluster strength is a positive number

less than one.

The cluster strength quantifies the degree of violation of the null hypothesis.

The ranking of the clusters makes it possible for a user to sort all the significant

clusters from the most hazardous to the least. The cluster strength is a function

of the following four factors:

• number of TCs within the cluster and their mutual position,

• the length of the cluster,

• the total number of TCs within the road section and
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• the length of the section.

Figure 2.5: Cluster strength is the relative height of the density function (blue
curve) above the threshold (red horizontal line). Cluster on the left is stronger
than cluster on the right.

In order to show how the cluster strength is influenced by the four mentioned

factors, we prepared a table (see Table 2.1), where four rows show clusters of the

same strength (0.72), but one of the factors has been changed in every row. It

is clear from Table 2.3 that if number of TCs within a cluster or the length of

the section increases, the cluster strength also rises. On the other hand, when

the length of the cluster or the number of the TCs out of the cluster grows, the

cluster strength decreases.

Table 2.1: Each row represents a cluster with the cluster strength of 0.72. Three
of the four settings are kept constant.

TCs/cluster TCs/section Cluster length [m] Section length [m]
10 15 100 2200
10 15 170 3000
10 21 100 3000
8 15 100 3000

When the length of a section rises, the probability that TCs occur within

a predefined distance drops. For example, if there are two TCs which are located
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elsewhere in a section but no more than 100 m apart, the probability that these

two TCs lie within the selected distance accounts for 19% for a 500 m long section,

but only 9.75% for a 1000 m long section. Therefore, the cluster strength is lower

(0.16 – 0.22) for the 500 m long road section than for the 1000 m long road section

(0.47 – 0.50).

The cluster strength shows, in descending order, the clusters from the most

significant to the least. This measure is suitable for ranking the clusters from

the view of a driver. It is something like a hazard for an individual driver. On

the other hand, we are aware that decision-makers are usually more interested in

mitigating the cumulative danger for all drivers. Therefore, the density of TCs

within a cluster combined with the cluster strength can be in the interest of road

administrators as well.

2.3. Accuracy of the Monte Carlo method

It is apparent that the threshold, and therefore also the cluster strength, varies

when performing repeated runs of the KDE+ method for the same data. This

is caused by the random character of the MC method. The accuracy of the MC

method increases with the number of simulations. In contrast, the number of sim-

ulations determines time-consumption of the analysis. Therefore, we needed to

find a balance between the accuracy of the MC method and its time-consumption

by setting the appropriate number of simulations.

In order to evaluate the accuracy of the MC method, we used confidence

intervals of cluster strength. These confidence intervals can be easily derived

from the confidence intervals of the threshold following the same approach as

during the calculation of the cluster strength. It should be recalled that the

threshold is the 100(1−α)% quantile (or its mean value). Thus, the 100(1−β)%

confidence interval of the threshold (see Figures 2.6 and 2.7) can be calculated

by the use of the binomial distribution in the following way.

For a fixed x0 ∈ (0, L), let us suppose that M simulations were performed and

probability density functions estimated by the use of the KDE method during
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the simulations, denoted by g1(x0), g2(x0), . . ., gM(x0), are ordered increasingly.

We calculate indices

i = max

{
l ∈ {0, 1, . . . ,M + 1};

l−1∑
k=0

(
M

k

)
(1− α)kαM−k ≤ β

2

}
,

I = min

{
u ∈ {0, 1, . . . ,M + 1};

M∑
k=u

(
M

k

)
(1− α)kαM−k ≤ β

2

}

and denote qlow(x0) = gi(x0) and qup(x0) = gI(x0). This process is performed for

all x0 ∈ (0, L). See [25] for the details on computing indices i and I. Finally, we

arrive at the 100(1− β)% confidence interval (hup, hlow) of h by calculating

hlow =
1

L

∫ L

0

qlow(x) dx, hup =
1

L

∫ L

0

qup(x) dx.

Similarly, the 100(1−β)% confidence interval of H accounts directly for (mi,mI),

assuming that maximums calculated during the simulations, denoted by m1, m2,

. . ., mM , are ordered increasingly.

Figure 2.6: The estimated probability density function of the underlying TCs
(blue curve), the threshold in the local test (thick red line) and its 99% confidence
interval (thin red lines).

The 100(1 − β)% confidence interval of a cluster strength can be computed
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as follows: (
f̂max − hup

f̂max

,
f̂max − hlow

f̂max

)
⊂ (0, 1),

where f̂max is the maximum of f̂(x) within the particular cluster. Although we

order the clusters according to their strength, we can conclude that two clusters

differ significantly with respect to the cluster strength only if the confidence

intervals of their cluster strengths do not overlap.

Figure 2.7: The estimated probability density function of the underlying TCs
(blue curve), the threshold in the global test (thick red line) and its 99% confi-
dence interval (thin red lines).

2.4. Stability of significant clusters

Stability in general means that a small change in input data leads to a small

change in the result. Regarding clusters, two types of stability can be considered:

temporal stability and stability related to the database of TCs. We focused on

the later type of stability.

B́ıl et al. [7] introduced a simple test for stability of a cluster. With the use

of the stability test we can focus on the most important clusters. Furthermore,

the stability test eliminates possible mistakes in the database (e. g. a TC can
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be snapped to a wrong road section or the location of a TC can be recorded

incorrectly).

Stability of a cluster shows to what extend the cluster depends on the accuracy

of the input data. Stable clusters are not affected by a slight change in the

number of TCs or in their positions along the road section. On the other hand,

an unstable cluster disappears or its cluster strength varies significantly after

deleting or adding a single TC. Since underreporting is a frequent problem, the

stability of any method is an important feature. We focused on the stability of

the KDE+ method with respect to the input data in the following examples.

Figure 2.8: Graphical representation of the KDE+ applied to two road sections
1000 m long. TCs occurred at the places represented by blue dots. Thick red
horizontal line stands for the threshold and thin red horizontal lines for its 99%
confidence interval.
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Imagine two road sections, each 1000 m long. Within each road section,

ten TCs occurred and one significant cluster was identified by the use of the

KDE+ method (see Figure 2.8). The cluster within the first road section is more

hazardous (the cluster strength accounts for 0.56) than the cluster on the second

road section (the cluster strength is 0.23).

We calculated the relative frequency of finding a significant cluster in the

same place as the original cluster after removing TCs on a road section. All

possible combinations of removed TCs were taken into account. This calculation

was conducted for the two road sections depicted in Figure 2.8. The obtained

results (see Table 2.2) demonstrate that the KDE+ is stable even if only a limited

number of crashes are available. In addition, the cluster with a greater strength

is more stable. It means that more important clusters are less prone to disappear

when some crashes are missing in the database. This feature is of exceptional

importance because crash database usually contains only a limited number of

data. The issue of stability of the significant clusters is further studied on the

actual data in section 4.1.

Table 2.2: Relative frequencies of a cluster identification at the same place as
the original cluster after removing a given number of TCs on a road section (see
Figure 2.8). All possible combinations of removed TCs were taken into account.

Removed crashes [%]
Cluster identification rate [%]
Section 1 Section 2

10 100 100
20 100 87
30 100 67
40 100 45
50 99 74
60 97 55
70 82 33
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2.5. Comparisons with other clustering methods

To show the contribution of the proposed approach, we compared the KDE+

approach with other methods which were recently used in cluster analyzes of TCs.

We used:

• the K-function [32],

• hierarchical clustering [22],

• the dangerousness index (DI) method [30] and

• the clumping method [22].

It is clear that the K-function is able only to specify whether there is clustering

on a section without specifying where on the section it occurred.

Hierarchical clustering does not have any tool to evaluate statistical signifi-

cance of clusters. It was only able to identify clusters of TCs.

The DI method is in fact a special case of the KDE. It is based on the ”points

of measurements”. We think, however, that the positions of crashes should be

used instead of ”points of measurements”. When there is not a substantially dense

network of ”points of measurements” some localities can be underreported. Two

exact situations can be evaluated differently in relation to positions of ”points

of measurements” and TCs. When the network of ”points of measurements” is

dense enough, the method converges to the standard KDE.

The clumping method is able to detect the cluster positions, but it is too

sensitive. It means that a small change of location of TCs outside a cluster can

affect the significance of the cluster itself.

Our approach improves the standard KDE by statistical testing and the clus-

ter strength computation which serves as a tool for direct comparison of the

significant clusters (see Table 2.3).
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Table 2.3: Comparison of clustering methods used for hotspots detection. Sym-
bols ”+” and ”−” represents YES and NO, respectively.

Cluster Significance
Ordering Stability

localization test
KDE + − − +
Dangerousness index + + − +
K-function − − − +
Hierarchical clustering + − − +
Clumping method + + − −
KDE+ + + + +

2.6. Software realization

The KDE+ method has been already developed in a software package and

as a toolbox for ArcGIS. Both the software package and the toolbox can be

downloaded as a freeware (only registration of an e-mail address is needed to

download the application) from www.kdeplus.cz website as a single compressed

zip file. This folder contains application KDEplus.jar. Java Runtime Environ-

ment (from version 7) is needed to run this application. It can be downloaded

from http://java.com/download. The folder with the application also includes

two demonstration files, one for the road section and the second for TCs.

The KDE+ is a desktop application with windows. The main window serves

for file import and allows for the running of the computing. Important reports

are written in the text box at the bottom. An additional window appears if the

user is interested in examining the graphics representation of a particular road

section (see Figure 2.9). There are visualized graphs of the estimated probability

density function and the threshold. The interface is currently written in Czech

and English.

Several computation threats can be run in parallel fashion in order to take

advantage of multiple processor cores. This feature shortens the computing time

significantly and the computer is used effectively since contemporary computers

are equipped with more than one core. The application can also be used without
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the window environment, i.e. in a command line. This would be useful in grid

computing in the case of processing a large amount of data.

Figure 2.9: Working environment of the KDE+ software.
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Chapter 3

The KDE+ method for interval
data

The Czech Police adds a GPS location to all TCs since 2007. However, we

were aware that certain countries do not use precise GPS positions to georeference

TCs. We discovered that the most widely used system for referencing the TCs,

different from GPS localization, uses the linear referencing system (LRS) with

100 m accuracy. This means that TCs are located with 100 m precision from the

beginning of a road segment to its end. In such a setting, where the data is not

precise due to a systematic error (e.g. rounding error), the KDE+ method would

not work properly. We took this fact into consideration and extended the KDE+

method to be applicable to interval data. In both the software package and the

toolbox for ArcGIS, a user can select the input data type (GPS or LRS).

The modification of the KDE+ method affects only the choice of the kernel

function. Originally, we used the Epanechnikov kernel to the exact GPS posi-

tions of the TCs. The new kernel ϕd,v(x) with a bandwidth d > 0 and v > 0

quantifying the inaccuracy, is derived from the Epanechnikov kernel and reflects

the uncertainty of the position of a TC.

The GPS position of a TC belongs to an interval determined by the un-

certainty of the LRS. Thus, the error of the LRS for a particular TC can be

considered as a random variable and its probability density function is defined on

the interval (−v, v), where v > 0 is the maximal rounding error (e. g. uncertainty

32



of the LRS). Let us denote this random variable as Z. Since we do not have any

further information on the exact position of the TC, we can assume that Z has

the uniform distribution with support (−v, v). Hence, the probability density

function of Z is

g(z) =

{
1
2v

, |z| ≤ v,
0, |z| > v.

(3.1)

Let us think symbolically for a while. In the original setting, the risk of a TC

is spread by applying the probability density function Kd(x −X0), where X0 is

the exact position of the TC given by the GPS coordinates. If the GPS position

of a TC is uncertain, we have to consider all its possible values. Thus, ϕd,v(x) =∑
z fd(x|Z = z)P (Z = z) according to the formula of the total probability. The

conditioned probability density function has the form fd(x|Z = z) = Kd(x− z),

because if the exact position of the TC is z, then we spread the risk of the TC

by the use of the Epanechnikov kernel around this point. In order to perform

the derivation properly, we calculate the probability density function of ϕd,v(x)

as follows

ϕd,v(x) =

+∞∫
−∞

fd(x|z)g(z) dz =

+∞∫
−∞

Kd(x− z)g(z) dz =

= (Kd ∗ g)(x), (3.2)

which means that the new kernel is a convolution of the Epanechnikov kernel and

function g(z) (the uniform probability density function in our case). This result

does not depend on the assumed shape of g(z). Hence, any other probability

density function can be used, if it is reasonable.

The explicit formula of the resulting convolution (3.2) with g(z) given by (3.1)
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depends on the values d and v. First, we define four auxiliary functions:

F1(x) =
−3vd2 + (x+ v)3

8vd3
,

F2(x) =
3vd2 + (x− v)3

8vd3
,

F3(x) =
3x− 2d

8vd
,

F4(x) =
3x+ 2d

8vd
.

(3.3)

If d ≥ v, then

ϕd,v(x) =


F4(x)− F1(x), |x+ d| < v,
F2(x)− F3(x), |x− d| < v,
F2(x)− F1(x), |x| ≤ d− v,
0, |x| > d+ v,

otherwise (d < v), it holds that

ϕd,v(x) =


F4(x)− F1(x), |x+ v| < d,
F2(x)− F3(x), |x− v| < d,
F4(x)− F3(x), |x| ≤ v − d,
0, |x| > v + d,

As expected, ϕd,v(x) has wider support than Kd(x) due to the uncertainty in the

data (see Figure 3.1).

Finally, the kernel density estimation is provided by the formula

f̂n(x) =
1

n

n∑
i=1

ϕd,v(x− Yi), (3.4)

where Yi ∈ (0, L), i = 1, . . ., n, are the LRS positions of TCs, n ∈ N is the

number of TCs within the particular road section and L > 0 denotes the length

of the road section.

The application of kernel function ϕd,v(x) is a better option than the use of

Kd(x) in the case of the LRS data, because:
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Figure 3.1: A comparison of the Epanechnikov kernel and the combined Epanech-
nikov/uniform kernel (d = 100, v = 50).

• ϕd,v(x) is correct while Kd(x) is incorrect from the theoretical point of view,

• Kd(x) leads to only one possible outcome hidden behind the LRS data, while

the use of ϕd,v(x) takes into account all possible outcomes (see Figure 3.2),

• considering the case study depicted in Figure 3.3, Kd(x) can result in false

clusters (although there are three significant clusters determined by the use

of Kd(x), there should be only one significant cluster).

We remark that formula (3.4) can be also used to estimate a probability

density function from interval data with unequal lengths of intervals. It can be

done in the following way:

f̂(x) =
1

n

n∑
i=1

ϕd,vi(x− Yi), (3.5)
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where Yi, i = 1, . . . , n, are centers of the intervals and vi, i = 1, . . . , n, are

half-lengths of the intervals.

Concerning the spatial analysis of TCs, it stems from the nature of the LRS

that the uncertainty in the exact position of a TC is the same for all TCs in

a particular database. Thus, we use formula (3.4) and not its more general

version (3.5) for estimating a probability density function of TCs given with

some systematic error.
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Figure 3.2: A comparison of possible KDEs of GPS data with the classical
Epanechnikov kernel and combined Epanechnikov/uniform kernel applied to LRS
data for two TCs (top) and three TCs (bottom) which are located in the interval
〈450, 550〉 within a kilometre-long road section.
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Figure 3.3: Performance of Epanechnikov kernel (top) and Epanechnikov/uniform
kernel (bottom) applied to LRS data (8 TCs).
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Chapter 4

Results

The KDE+ method was applied to the Czech road network. TCs without

distinction were analyzed at first. We identified 3.12% of the entire road network

length as hazardous. It consists of 8,739 significant clusters containing 37,885

(41.9%) TCs.

In practice, it is usually not possible to apply mitigation measures at all haz-

ardous places due to a limited budget allocated for this purpose. Therefore, the

ordering of the hotspots is necessary. The KDE+ method enabled us to rank the

significant clusters according to their strength. Subsequently, road administrators

can select the strongest clusters for applying mitigation measures or focus only on

the clusters which are significant also according to the global test. For instance,

there were 86 clusters with cluster strength greater than 0.7 (see Figure 4.1) cov-

ering 22.3 km (0.06% of the entire road network). The most hazardous location

was 225 m long and contained 63 TCs. Its cluster strength was 0.88. These very

strong clusters are likely not false alarms produced by the method.

We used the KDE+ method to examine clustering of specific types of TCs,

namely single-vehicle TCs, two-vehicles TCs and TCs with severe injury or death.

Table 4.1 shows the outcomes of the performed analysis. Clusters of TCs with

severe injury or death were the shortest on average. TCs with severe injury

or death have the lowest tendency to form patterns (only 15.3%). The most

hazardous places were depicted in a map [6].
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Figure 4.1: Number of clusters of TCs on the Czech road network (bars) and the
total length of clusters (dots) with respect to the cluster strength.

Table 4.1: The results of cluster analysis performed by the use of the KDE+
method on the Czech road network. The data on TCs were recorded over the
period 2009 – 2013.

Group of TCs
Without

Single-vehicle Two-vehicles
With severe

distinction injury or death
Number

90,418 59,811 26,512 5,953
of TCs
Number of

8,910 6,555 2,657 406
clusters
Number of TCs

41.9 39.9 31.8 15.3
in clusters [%]
Total length

3.12 1.98 0.71 0.08
of clusters [%]
Mean length

120 113 101 70
of clusters [m]
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4.1. Performance of the Monte Carlo method

on actual data

We analyzed the TCs without distinction by the use of the KDE+ method

with varying number of MC simulations ranging from 200 to 1200. Computations

were performed in Scilab 5.5.0 [28] on PC Intel Core i7 (2.7 GHz) with 8 GB RAM.

We set β = 0.01 in our computations.

The results varied very little for the number of simulations greater than 400

and varied insignificantly for the number of simulations greater than 800 (see

Table 4.2). Therefore, we concluded that 800 simulations represent a sufficiently

good balance between accuracy and time-consumption of the KDE+ method.

This balance is primarily needed when performing the analysis multiple times

(e. g. for various time periods, for various types of TCs).

Table 4.2: Results from the KDE+ analysis of the Czech road network with
varying number of MC simulations.

Number of Number of TCs within Length of Time
simulations clusters clusters [%] clusters [%] [h]

200 8,253 39.7 3.01 1.05
400 8,759 41.4 3.10 2.13
600 8,835 41.7 3.11 3.25
800 8,910 41.9 3.12 4.27
1000 8,953 42.0 3.12 5.17
1200 8,955 42.0 3.12 6.40

We observed that stronger clusters have narrower confidence intervals in their

strengths (Figure 4.2). This can be explained in the following way. The cluster

strength is defined as the maximum relative height of f̂(x), x ∈ (0, L), within the

cluster above the threshold. Let us denote

f̂max – the maximum of f̂(x) within the particular cluster,
r – the relative error of the MC method,
h – the exact threshold (unknown),
h± rh – the threshold calculated by the use of the MC method (known),
s – the exact cluster strength (unknown),
ŝ – the estimated cluster strength (known).
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From the definition of the cluster strength, we have

s =
f̂max − h
f̂max

, ŝ =
f̂max − (1± r)h

f̂max

.

Practically, we can calculate only ŝ. Therefore, we are interested in evaluating

the difference between the estimated and exact cluster strengths. It holds that

|s− ŝ| =

∣∣∣∣∣ f̂max − h+ f̂max + (1± r)h
f̂max

∣∣∣∣∣ =
rh

f̂max

= r(1− s).

Hence, the greater strength of a cluster leads to a more precise estimate. There-

fore, we are more certain in terms of more hazardous locations.

Figure 4.2: The average widths of confidence intervals of cluster strengths for
various numbers of simulations and varying minimum cluster strengths.
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4.2. Stability of the significant clusters

within the Czech road network

We testified significant clusters with the cluster strength of more than 0.5

for their spatial stability with respect to the missing data. Since the number

of possible combinations of removed crashes is extremely large for road sections

with many TCs, we randomly chose a thousand of combinations for each road

section and each particular percentage of removed crashes as an estimate of the

relative frequency of cluster identification.

Table 4.3 shows that underreporting of 20% is not a problem in localization of

almost all significant clusters with cluster strength greater than 0.5. Furthermore,

majority (95%) of the clusters is more likely identified than not when even 50%

of data is missing. In average, it is more than three times more likely to find

a significant cluster than not when up to 60% data is missing in the database.

Table 4.3: Relative frequencies of cluster identification at the same place as the
original cluster after removing a given percentage of TCs on a road section.
Actual data – significant clusters within the Czech road network with cluster
strength above 0.5 were considered.

Removed crashes [%]
Cluster identification rate [%]
In average 5th percentile

10 100 100
20 99 96
30 98 88
40 94 70
50 84 50
60 76 33
70 60 0
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Conclusions

We introduced a method which should assist road administrators in the quick

identification of the most hazardous places within a transportation network. All

the data which are needed for the analysis performed by the KDE+ method are

just:

• the positions of TCs on a road section and

• the length of the road section.

This feature is of merit, because any other characteristics about the traffic and

the infrastructure are not needed for the identification of hazardous locations.

The method produces a dimensionless number, cluster strength, by which it is

possible to order the previously identified hotspots. The presented results allowed

the road administrators to effectively localize the most dangerous places within

the road network.

A comparison of the KDE+ method with other methods for the identification

of hazardous locations was published in [7]. The main advantage of the KDE+

method is its stability and objectivity. In addition, the strength of a cluster

is a measure which enables the ordering of clusters. This unique feature of the

method helps road administrators apply mitigation measures in the most effective

way.

We had the GPS locations of all TCs from 2009 to 2013. This is not, however,

the case in many European countries. Therefore, we extended the framework of

the KDE+ method to also be applicable for LRS data. A new kernel function

was derived and tested. Our results demonstrate that the new kernel function is

appropriate for LRS data from both theoretical and practical view.
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In order to enable the application of our KDE+ method also to other re-

searches, we developed the KDE+ software [5]. It can be downloaded as freeware

from the www.kdeplus.cz website. The KDE+ software can benefit from multi-

core computers, because it allows for parallel computing in several threads. This

feature significantly shortens the time needed for computation. Therefore, it can

be used when processing a large amount of data.

The KDE+ method was applied to the entire Czech road network to obtain

a list of significantly hazardous locations (clusters). The presence of clusters

indicates the unlikely arrangement of TCs within a road section. TCs inside

clusters follow a local spatial pattern. This means that the majority of TCs inside

clusters were induced by local factors which should be consequently determined

and investigated in the next step of the safety analysis.
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