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Úvodní slovo

V dnešní době je statistika a jí příbuzné disciplíny nedílnou součástí našich ži-

votů. Ať už si to uvědomujeme či ne, setkáváme se s jejími důsledky a aplikacemi

prakticky každý den. Při studiu, v zaměstnání, při sledování televize, při čtení

novin nebo v konverzaci s ostatními lidmi. Proto je určitě přínosné zajímat se

ze statistického hlediska hlouběji vztahy a zákonitostmi, které se vyskytují kolem

nás. Pomáhá nám to pochopit různé přírodní či společenské jevy. Aplikace statis-

tiky lze najít snad ve všech vědních odvětvích počínaje matematikou, ekonomií

přes medicínu, techniku, astronomii a psychologií konče. Vzhledem k rozmani-

tosti, která je typická tomuto světu, se statistické metody rozvinuly do obrovské

šíře a lze předpokládat další rozvoj. Zde se budeme zabývat smíšenými distri-

bucemi.

Smíšené distribuce jsou poměrně mladou oblastí matematické statistiky. Nej-

větší rozvoj zažily teprve až ve druhé polovině 20. století. V současnosti díky

možnostem výpočetní techniky je možno smíšené distribuce pohodlně využívat

při řešení rozmanitých problémů. V této práci se seznámíme se smíšenými dis-

tribucemi jako s užitečným nástrojem modelování různých jevů a dat. Ukážeme

si základní definici smíšené distribuce, její různé typy a tvary a zaměříme se

na metody odhadů parametrů smíšených distribucí. Na závěr si uvedeme příklad

použití smíšené distribuce v medicínské praxi.

Cílem práce je seznámit čtenáře se základními vztahy v oblasti smíšených dis-

tribucí, s metodami odhadů jejich parametrů a ukázat jejich praktickou aplikaci.

Práce je zaměřena především na aplikaci ne zcela standardního algoritmu

na reálná data s medicínsky smysluplnou interpretací. Zárověň se snaží být i

jakýmsi vodítkem či návodem pro čtenáře, který při řešení svých úkolů potřebuje

pomoc.

4



1 Úvod do problematiky smíšených distribucí

1.1 Historický náhled

Jednu z prvních významnějších analýz, které zahrnovaly použití smíšených

distribucí, provedl na konci 19. století známý anglický biometrik Karl Pearson.

Ve své práci modeloval smíšenou distribuci ze dvou hustot normálních rozdě-

lení se středními hodnotami µ1 a µ2 a rozptyly σ21 a σ22 v proporcích π1 a π2

z dat, které mu poskytl jeho kolega W.F.R. Weldon. Později se ukázalo, že jeho

práce byla první, která prosazovala statistickou analýzu jako primární metodu

studia biologických problémů. Data, která Pearson analyzoval, se skládala z vý-

sledků měření poměru čela k tělesné výšce člověka. K dispozici měl 1000 měření

z oblasti neapolského zálivu. Měření bylo rozděleno do 29 intervalů a zobrazeno

v histogramu, ve kterém se projevila určitá šikmost. Z tohoto pozorování Weldon

usuzoval, zda není možné, že měřená populace se vyvíjí ve dva nové poddruhy.

Na základě tohoto zjištění se pak obrátil na Pearsona pro pomoc s analýzou dat.

Pearson modeloval data metodou momentů. Dnes se používá vhodnější me-

toda maximální věrohodnosti, kterou si přiblížíme i v této práci. V jeho modelu

se ukázalo, že tato smíšená distribuce dvou normálních rozdělení přesně splňuje

Pearsonův záměr, jenž byl modelovat zjevnou šikmost projevenou v histogramu,

kterou nelze adekvátně modelovat symetrickým normálním rozdělením. Odhady

parametrů svého modelu (µ1, µ2, σ21, σ
2
2 a π1; π2) vypočítal jako kořeny polynomu

stupně 9, což na konci 19. století nebylo jednoduchým úkolem. Není překvapivé,

že další vědci se během let pokoušeli zjednodušit Pearsonův postup, například

C.V.L. Charlier. S nástupem počítačů se pozornost přesunula na odhadování pa-

rametrů smíšených distribucí metodou maximální věrohodnosti, kterou se zabý-

vali Jeffreys, Rao, Hasselblad, Dempster či Aitkin. V posledních letech se smíše-

nými distribucemi zabývali například Lindsay Böhning nebo Wedel a Kamakura,

kteří se zabývali aplikací smíšených distribucí v marketingu. Vznikly také nové

metody odhadování parametrů. My se seznámíme s tzv. EM algoritmem. Další

podrobnosti lze nalézt například v [8].
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1.2 Základní definice

Smíšené distribuce poskytly matematicky založený přístup ke statistickému

modelování široké škály různých jevů. Díky užitečnosti, která je dána značnou

flexibilitou při modelování, získaly modely smíšených distribucí značnou pozor-

nost nejen z praktického, ale i z teoretického úhlu pohledu. V posledních letech

se rozsah a potenciál aplikací smíšených distribucí široce rozšířil. Aplikace smíše-

ných distribucí se uplatnily například v astronomii, biologii, genetice, medicíně,

psychiatrii, ekonomii či marketingu. Teorie v této kapitole je založena především

na knihách [6, 8].

Definice 1.1 Nechť fi(y ; θi) je hustota p-rozměrného náhodného vektoru Y i a

πi > 0, ∀i = 1, 2, . . . , c, nechť platí π1 + π2 + . . .+ πc = 1. Pak hustotu

f(y) =
c∑

i=1

πifi(y; θi) (1)

nazýváme smíšenou distribucí.

Parametry πi reprezentují váhu i-té složky smíšené distribuce náhodného vek-

toru Y i, fi(y; θi) je hustota složky s parametry zastoupenými vektorem θi a c je

počet složek modelu.

Funkční hodnotu f(y) pak spočítáme tak, že spočítáme funkční hodnoty

fi(y; θi) v bodě y, vynásobíme je příslušnými vahami a sečteme je.

V této formulaci modelu je počet složek modelu stanoven. Může se ale stát, že

je počet složek neznámý, a pak je nutno jej zjistit z dat spolu s dalšími parametry.

V další části této kapitoly se nejprve budeme krátce věnovat smíšeným dis-

tribucím vytvořených z jednorozměrných náhodných veličin a pak se blíže sezná-

míme s vícerozměrnými smíšenými distribucemi

Pro názornost si uvedeme příklad.

Příklad 1.1 Nakreslete graf smíšené distribuce dané vztahem

f(y) = 0.3× φ(y;−3, 1) + 0.3× φ(y; 0, 1) + 0.4× φ(y; 2, 0.5), (2)
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kde φ(y;µ, σ2) reprezentuje hodnotu hustoty normálního rozdělení v bodě y s da-

nou střední hodnotou µ a rozptylem σ2.
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Obrázek 1: Hustota smíšené distribuce složené ze 3 komponent

Z modelu je patrné, že váhy jednotlivých složek splňují podmínky, a že hustoty

složek jsou vycentrovány v bodech -3, 0, resp. 2. Graf této distribuce je zobrazen

na obrázku 1. Kód pro vytvoření grafu v Matlabu je uveden v příloze A1.

Obecně složky smíšených distribucí mohou být jakéhokoliv typu. Tzn. spo-

jité nebo diskrétní. Zde se budeme zabývat pouze případy složek se spojitým

rozdělením, speciálně s normálním rozdělením.

1.3 Vizualizace smíšených distribucí

Ukážme si nejprve, jakým způsobem lze zobrazit podkladovou strukturu smí-

šených distribucí. Strukturou máme na mysli počet složek ve spojení se středními

hodnotami a rozptyly. V podstatě se snažíme vizualizovat vícerozměrný paramet-

rický prostor (µ1, . . . , µc, σ
2
1, . . . , σ

2
c a π1, . . . , πc−1, tzn. 3c−1 parametrů) ve dvoj-

rozměrné reprezentaci. Způsob, který si zde uvedeme se anglicky nazývá dF plot.
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Ve vizualizaci pomocí dF plotu je každá složka znázorněna kruhem, který je umís-

těn v bodě se souřadnicemi [µi, πi] a jehož poloměr je dán standardní odchylkou,

jejíž velikost zjišťujeme ve směru osy střeních hodnot.

Nyní si uveďme příklad dF plotu (viz obrázek 2), který odpovídá modelu

z příkladu 1.1. První kruh zleva koresponduje se složkou s váhou π1 = 0.3 a
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Obrázek 2: dF plot modelu třísložkové smíšené distribuce

střední hodnotou µ1 = −3. Jeho poloměr je roven 1. Podobně střední (resp.
pravý) kruh reprezentují druhou (resp. třetí) složku. Všimněme si, že vizualizace

nám pomáhá zjistit už na první pohled, které složky mají nejvetší váhu a kde

jsou umístěny. Zdrojový kód obrázku viz příloha A2.

1.4 Smíšené distribuce dvou normálních rozdělení se stej-
ným rozptylem

V této části si ukážeme, jak vypadají některé hustoty dvousložkových smíše-

ných distribucí normálních rozdělení v proporcích π1 a π2, uvažujeme-li stejný
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rozptyl σ2 a střední hodnoty µ1 a µ2. Odpovídající hustota má tvar

f(y) = π1φ(y;µ1, σ
2) + π2φ(y;µ2, σ

2), (3)

kde

φ(y;µ, σ2) = (2π)−
1

2σ−1exp

[
−1
2
(y − µ)2/σ2

]
(4)

je hustota normálního rozdělení se střední hodnotou µ a rozptylem σ2.

Pokud se střední hodnoty od sebe dostatečně liší, lze očekávat, že hustota

f(y) se bude podobat dvěma hustotám položeným vedle sebe. Taková hustota je

bimodální. V případě, že jsou si střední hodnoty blízko, je hustotu unimodální.

Na ukázku si uvedeme pár grafů hustot pro různé hodnoty ∆ v případě, že µ1 = 0,

µ2 = ∆, σ = 1 a váhy složek jsou si rovny, tj. π1 = π2 = 0.5 (viz obrázek 3, kód

příloha A3). Na této ukázce lze vidět, že s rostoucím ∆ se tvar hustoty mění

z unimodálního na bimodální. Hranice této změny je v našem případě znatelná

pro ∆ = 3.

Obecně ∆ definujeme vztahem

∆ = |µ1 − µ2| /σ (5)

a nazýváme Mahalanobisova vzdálenost mezi složkami smíšené distribuce nor-

málních rozdělení se stejným rozptylem.

Jestliže jsou si střední hodnoty v modelu blízké, tak překrytí hustot složek

inklinuje k zastínění rozdílu mezi nimi (viz obrázky 3 (a),(b)). Obecně výsledkem

nebude symetrická hustota, pokud ovšem si váhy složek nejsou rovny (viz obrázek

3). Tento fakt je zobrazen na obrázku 4 (kód analogicky jako v příloze A3), kde

jsme použili stejné střední hodnoty a rozptyl, ale změnili jsme hodnoty vah složek

na π1 = 0.75 a π2 = 0.25.

V modelu lze také určit přesně vyjádření šikmosti γ1 a špičatosti γ2 hustoty

f(y) a to následovně (viz [8]),

γ1 =
a(a − 1)∆3

{a∆2 + (a+ 1)2}3/2
(6)
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Obrázek 3: Srovnání grafů hustot dvousložkových smíšených distribucí se stejnými
vahami složek, stejným rozptylem σ = 1 a středními hodnotami µ1 = 0, µ2 = ∆
v různý variantách ∆: a) ∆ = 1, b) ∆ = 2, c) ∆ = 3, d) ∆ = 4

a

γ2 =
a(a2 − 4a+ 1)∆4
{a∆2 + (a + 1)2}2

, (7)

kde ∆ je Mahalanobisova vzdálenost a a je poměr větší váhy složky k menší.

Situace se poněkud zkomplikuje, když budeme uvažovat více složek v modelu a

nestejné rozptyly. To bude předmětem další sekce.

1.5 Smíšené distribuce normálních rozdělení s nestejnými
rozptyly

Užitečnou publikaci charakterizující tvary hustot smíšených distribucí dvou

normálních rozdělení s nestejnými rozptyly napsal I. Eisenberger (viz [2]). Napří-
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Obrázek 4: Srovnání grafů hustot dvousložkových smíšených distribucí s vahami
složek π1 = 0.75 a π2 = 0.25, stejným rozptylem σ = 1 a středními hodnotami
µ1 = 0, µ2 = ∆ v různý variantách ∆: a) ∆ = 1, b) ∆ = 2, c) ∆ = 3, d)
∆ = 4

klad určil, kdy hustota bude bimodální a kdy ne. Platí-li nerovnost

∆2 < (27σ22)/ {4(1 + k)} , (8)

kde k = σ22/σ
2
1, pak hustota f(y) nemůže být bimodální. Naopak, platí-li opačná

nerovnost

∆2 > (27σ22)/ {4(1 + k)} , (9)

pak existuje hodnota π1, pro kterou je hustota f(y) bimodální.

Problematika c-složkových smíšených distribucí normálních rozdělení je velmi

široká. Abychom si ukázali proměnlivost a flexibilitu, uvedeme si pár příkladů

grafů hustot pro různé počty složek, středních hodnot a rozptylů (viz obrázek 5

a tabulka 1, kód v Matlabu vytvoříme analogicky jako v příloze A3).
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Obrázek 5: Grafy hustot různých smíšených distribucí: a) Silně šikmá, b) Tri-
modální, c) Špičatá unimodální, d) Asymetrický dráp , e) Dráp, f) Asymetrický
dvojitý dráp

Tabulka 1: Smíšené distribuce
Hustota f(y)
a) Silně šikmá

∑7
i=0

1
8
N(3

{
(2
3
)i − 1

}
, (2
3
)2i)

b) Trimodální 9
20

N(−6
5
, (3
5
)2) + 9

20
N(6

5
, (3
5
)2) + 1

10
N(0, (1

4
)2)

c) Špičatá unimodální 2
3
N(0, 1) + 1

3
N(0, ( 1

10
)2)

d) Asymetrický dráp 1
2
N(0, 1) +

∑2
i=−2(2

1−i/31)N(i+ 1
2
, (2−i/10)2)

e) Dráp 1
2
N(0, 1) +

∑4
i=0

1
10

N(i/2− 1, ( 1
10
)2)

f) Asymetrický dvojitý dráp
∑1

i=0
46
100

N(2i − 1, (2
3
)2) +

∑3
i=1

1
300

N(−i/2, ( 1
100
)2) +

+
∑3

i=1
7
300

N(i/2, ( 7
100
)2)
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1.6 Vícerozměrné smíšené distribuce

V této části si ukážeme jak vypadají smíšené distribuce složené z hustot ná-

hodných vektorů z normálních rozdělení. Obecný tvar vypadá následovně

f(y) = π1f1(y;µ1,Σ1) + π2f2(y;µ2,Σ2) + . . .+ πcfc(y;µc,Σc), y ∈ R
p. (10)

za podmínek
∑c

i=1 πi = 1, πi > 0. Vektor µi symbolizuje vektor středních hodnot

i-té složky distribuce a matice Σi je její varianční matice.

Příklad 1.2 Ukažme si jak vypadá smíšená distribuce dvou složek z dvouroz-

měrného normálního rozdělení. Obecný předpis této smíšené distribuce je

f(y) = πφ(y;µ1,Σ1) + (1− π)φ(y;µ2,Σ2), (11)

kde

φ(y;µ,Σ) = (2π)−
p

2 |Σ|−
1

2 exp

{
−1
2
(y − µ)TΣ−1(y − µ)

}
(12)

a parametry mají tvar

µ1 =

(
µ11
µ12

)
, µ2 =

(
µ21
µ22

)
,Σ1 =

(
σ11 σ12
σ21 σ22

)
,Σ2 =

(
σ′

11 σ′

12

σ′

21 σ′

22

)
, π ∈ (0, 1).

Poznámka: V rovnici (11) je π parametr, ve vztahu (12) je π konstanta.

Ukažme si tedy, jak bude vypadat smíšená distribuce s těmito paramety (viz

obrázek 6, kód příloha A4):

µ1 =
(
2
2

)
, µ2 =

(
0
0

)
,Σ1 =

(
1 0
0 1

)
,Σ2 =

(
1 0
0 1

)
, π = 0, 5.

Vidíme, že obě složky se graficky projeví jako pravidelné „kopceÿ, které se liší

pouze svým umístěním. Pravidelnost je dána volbou variačních matic, ve kterých

je nulová kovariance proměnných.

Teď změníme váhy složek tak, že první bude mít váhu 0,7 a druhá 0,3. Ostatní

parametry zatím ponecháme. Pozměněný graf smíšené distribuce vidíme na ob-

rázku 7 (kód analogicky jako A4).
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Obrázek 6: Dvousložková smíšená distribuce dvourozměrného nekorelovaného ná-
hodného vektoru se stejnými vahami složek

−3

−2

−1

0

1

2

3

−3
−2

−1
0

1
2

3
0

0.05

0.1

x1
x2

Obrázek 7: Dvousložková smíšená distribuce dvourozměrného nekorelovaného ná-
hodného vektoru s dominantní složkou

Vidíme, že se, stejně jako v jednorozměrném případě, pouze snížil „kopecÿ před-

stavující druhou složku. Podobnou změnu vyvolá změna rozptylu některé ze složek

náhodného vektoru. Například změna parametru σ11 z první distribuce z hodnoty

1 na 2, 5 způsobí zploštění a protažení (ve směru osy x1) části grafu připadající

první složce smíšené distribuce (obrázek 8, kód analogicky jako A4).

Zajímavější jsou změny grafů, když měníme varianční matice složek. Změny

středních hodnot ovlivní umístění „kopceÿ v souřadnicové soustavě. Vykresleme

graf smíšené distribuce s parametry (viz obrázek 9, kód analogicky jako A4):

µ1 =

(
2
2

)
, µ2 =

(
0
0

)
,Σ1 =

(
1 0, 5
0, 5 1

)
,Σ2 =

(
1 −0, 9

−0, 9 1

)
, π = 0, 5.
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Obrázek 8: Dvousložková smíšená distribuce dvourozměrného nekorelovaného ná-
hodného vektoru s různými hodnotami rozptylů

Můžeme pozorovat, že oba „kopceÿ se protáhly. Směr a intenzitu protáhnutí

určují varianční matice respektive korelace mezi proměnnými. První složka má

kladnou korelaci 0, 5, což se projeví v protažení ve směru osy prvního a třetího

kvadrantu. Druhá složka má zápornou a vysokou korelaci, což způsobí, že „kopecÿ

je více protáhlý než u první složky a protažení ve směru osy druhého a čtvrtého

kvadrantu. Přípomínám, že při nulové korelaci jsou „kopceÿ pravidelně kulaté.

Na závěr si ukažme ještě příklad pětisložkové smíšené distribuce (viz obrázek 10,
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Obrázek 9: Dvousložková smíšená distribuce dvourozměrného náhodného vektoru
s kladnou i zápornou korelací

kód analogicky jako A4).
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Obrázek 10: Pětisložková smíšená distribuce dvourozměrného náhodného vektoru

Stejně jako u smíšených distribucí z jednorozměrného rozdělení můžeme ke zná-

zornění vícerozměrné distribuce použít dF plot. V dvourozměrném případě bude

dF plot vypadat podobně. Zobrazíme proto na obrázku 11 (kód analogicky jako

A2) dF plot pro model:

π1 = 0, 5, π2 = 0, 3, π3 = 0, 2, µ1 = (0 1)
T , µ2 = (3 3)

T , µ3 = (2 5)
T

Σ1 =
(
1 0
0 1

)
, Σ2 =

(
3 0, 2
0, 2 1

)
, Σ3 =

(
1 −0, 4

−0, 4 1

)
,

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

0.5

0.3

0.2

Mu
x

M
u y

Dvourozmerny df Plot

Obrázek 11: dF plot dvourozměrné smíšené distribuce
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Střední hodnoty jsou reprezentovány umístěním v souřadnicové soustavě. Va-

rianční struktura v modelu je popsána elipsami se středy určenými středními hod-

notami. Pro úplnost zkusme ještě vykreslit dF plot pro třírozměrnou třísložkovou

smíšenou distribuci (viz obrázek 12, kód analogicky jako A2) danou modelem:

π1 = 0, 5, π2 = 0, 3, π3 = 0, 2,

µ1 = (0 1 0)
T , µ2 = (3 3 3)

T , µ3 = (2 5 7)
T

Σ1 =



1 0 0
0 1 0
0 0 1


 , Σ2 =



3 0, 2 0
0, 2 1 1
0 1 3


 , Σ3 =



1 −0, 4 0

−0, 4 1 0
0 0 1


 .

Interpretace obrázku je analogická dvourozměrnému případu. Střední hodnoty

.5  1
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Obrázek 12: dF plot dvourozměrné smíšené distribuce

určují polohu elipsoidů, které jsou determinovány varianční strukturou. Barva

znázorňuje váhu složek.

Ukázali jsme si, že smíšené distribuce normálních rozdělení náhodných vek-

torů se vyznačují velkou proměnlivostí. Jejich hustoty se mohou značně měnit už

při malých změnách vah, středních hodnot či rozptylů (resp. variančních matic).

Důležité je také určení počtu složek distribuce. Nyní se podívejme na to, jak lze

určit parametry v modelech smíšených distribucí, máme-li k dispozici naměřená

data.
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2 Metody určování parametrů

Definice 2.1 Nechť Y = (Y1, . . . , Yn) je náhodný výběr rozsahu n příslušný

statistickému znaku Y . Výběrovou funkci

Yn =
1
n

n∑

j=1

Yj (13)

nazýváme výběrový průměr a funkci

S2n =
1

n − 1

n∑

j=1

(Yj − Yn)2 (14)

nazýváme empirický rozptyl.

Definice 2.2 NechťY = (Y 1, . . . , Y n) je náhodný výběr rozsahu n z p-rozměrného

normálního rozdělení. Výběrovou funkci

Y n =
1
n

n∑

j=1

Y j (15)

nazýváme výběrový průměr. Čtvercovou matici rozměru p

W =
n∑

j=1

(
Y j − Y n

) (
Y j − Y n

)T
(16)

nazýváme Wishartova matice s n − 1 stupni volnosti a matici

S =
1

n − 1W (17)

nazýváme empirická varianční (kovarianční) matice.

Poznámka 2.1 V některých případech se místo S používá S ′ = 1
n
W . Matice S

a S ′ resp. |S| a |S ′| se používají jako analogie jednorozměrného rozptylu.

Definice 2.3 Nechť f(y, θ) je hustota obecného rozdělení s parametry uspořáda-

nými ve vektoru θ = (θ1, . . . , θk), pak Fisherova informační matice pro parametr

θ je dána vztahem

F (θ) = Ef
∂

∂θ
lnf(y, θ)

[
∂

∂θ
lnf(y, θ)

]T

. (18)
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Mějme Y1, . . . ,Yn náhodný výběr rozsahu n, kde Yj je p-rozměrný náhodný

vektor s hustotou f(yj) na R
p. V praxi Yj obsahuje náhodné veličiny odpo-

vídající p měřením vykonaných v j-tém opakování určitého jevu. Nechť Y =

(YT
1 , . . . ,Y

T
n )

T , kde T znamená vektorovou transpozici. Vidíme, že Y reprezen-

tuje celý vzorek, tj. n-tici bodů v R
p. Realizaci náhodného vektoru budeme ozna-

čovat malým písmenem. Např. y = (yT
1 , . . . , y

T
n )

T označuje realizaci náhodného

výběru, kde yj je pozorovaná hodnota nahodného vektoru Yj. Dále předpoklá-

dejme, že hustota f(yj) je smíšenou distribucí c složek, tj.

f(yj) =
c∑

i=1

πifi(yj; θi). (19)

Nejprve se zaměříme na náhodný výběr, kde Yj je jednorozměrná náhodná

veličina, která je normálně rozdělená. Dostáváme pak smíšenou distribuci

f(y) =
c∑

i=1

πiφ(y;µi, σ
2
i ), (20)

kde φ(y;µi, σ
2
i ) označuje hustotu normálního rozdělení se střední hodnotou µi a

rozptylem σ2i . V tomto případě neznáme c − 1 vah jednotlivých složek, c střed-
ních hodnot a c rozptylů. Celkem tedy 3c− 1 parametrů. V modelech smíšených
distribucí je největší početní břemeno spojeno právě s odhadováním parametrů.

2.1 Metoda maximální věrohodnosti

Metoda maximální věrohodnosti (viz [5]) je jedna z metod, jak určit odhady

neznámých parametrů daného rozdělení pravděpodobností.

Nechť Y = (Y1, Y2, . . . , Yn) je náhodný výběr z rozdělení spojitého typu s hus-

totou f(y; θ), kde θ = (θ1, . . . , θk) ∈ Θ je vektor neznámých paramatrů. Hustota
náhodného výběru Y je

f(y; θ) =
n∏

i=1

f(yi; θ), (21)

protože složky náhodného výběru jsou nezávislé náhodné veličiny.
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Hustotu náhodného výběru Y uvažovanou při zvoleném Y = y jako funkci

parametru θ, nazýváme funkcí věrohodnosti a značíme ji symbolem L(θ), tedy

L(θ) =
n∏

i=1

f(yi; θ). (22)

Definice 2.4 Vektor statistik (výběrových funkcí) θ̂(Y) = (θ̂1(Y), . . . , θ̂k(Y)),

který pro Y = y splňuje vztah

L(θ̂(y)) ≥ L(θ), ∀θ ∈ Θ (23)

nazýváme maximálně věrohodným odhadem vektoru parametrů θ.

Definice maximálně věrohodného odhadu byla založena na následující úvaze:

Nechť máme dva různé body θ1 a θ2 z parametrického prostoru Θ. Je-li f(y, θ1)

o mnoho menší než f(y, θ2), znamená to, že výsledek pozorování Y = y má

při hodnotě parametru θ = θ1 o mnoho menší pravděpodobnost než při hod-

notě θ = θ2. Jsme tudíž ochotni považovat za správnou hodnotu parametru θ

spíše θ2 než θ1. Proto je maximálně věrohodným odhadem parametru θ takový

vektor statistik θ̂(Y) = (θ̂1(Y), . . . , θ̂k(Y)), který maximalizuje pro daný výběr

věrohodnostní funkci L(θ) na množině Θ možných hodnot parametru θ.

V praxi se ukázalo, že je vhodné místo maximalizace funkce L(θ) maximali-

zovat její logaritmus lnL(θ), který se nazývá logaritmická funkce věrohodnosti.

Důležitou podmínkou pro dobré statistické vlastnosti maximálně věrohodného

odhadu je tzv. regularita (podrobněji viz v [4]). Požaduje se zde zejména nezávis-

lost množiny {y : f(y; θ) > 0} na parametru θ a existence spojitých parciálních

derivací funkce L(θ) podle všech složek θ při každém y. Máme-li podmínky re-

gularity splněny, pak je maximálně věrohodný odhad θ dán řešením soustavy

rovnic

∂L(θ)
∂θj

= 0, j = 1, . . . , k, resp.
∂ lnL(θ)

∂θj
= 0, j = 1, . . . , k. (24)

Tyto rovnice se nazývají věrohodnostní rovnice. Jestliže bychom chtěli odhadnout

funkci τ(θ) vektoru paramentrů θ, můžeme klást při použití metody maximální

20



věrohodnosti

τ̂(θ) = τ(θ̂1, . . . , θ̂k). (25)

Například pro odhad podílu rozptylů σ2
1

σ2
2

dvou složek smíšené distribuce lze použít

získané hodnoty σ21 a σ22 a jednoduše je vydělit.

Nyní si ukážeme, jak bychom metodou maximální věrohodnosti postupovali

při určování parametrů smíšené distribuce složené ze dvou normálních rozdělení.

Příklad 2.1 Pokusme se pomocí metody maximální věrohodnosti najít odhady

parametrů smíšené distribuce ve tvaru

f(x) = π1φ(x;µ1, σ21) + (1− π1)φ(x;µ2, σ22), (26)

kde φ(x;µ, σ2) je hustota normálního rozdělení a π1 ∈ (0, 1).
Na první pohled vidíme, že věrohodnostní funkce bude mít 5 neznámých pa-

rametrů a můžeme ji zapsat následovně

L(µ1, µ2, σ21 , σ
2
2, π1) =

n∏

i=1

(
π1φ(xi;µ1, σ21) + (1− π1)φ(xi;µ2, σ22)

)
. (27)

Při zápisu s použitím explicitního vyjádření hustoty φ dostaneme tento tvar

L(µ1, µ2, σ21, σ
2
2, π1) =

n∏

i=1

(
π1

1√
2πσ1

exp

[
−(xi − µ1)2

2σ21

]
+

+ (1− π1)
1√
2πσ2

exp
[
−(xi − µ2)2

2σ22

])
=

=
1

(
√
2π)n

n∏

i=1

(
π1
1
σ1
exp

[
−(xi − µ1)2

2σ21

]
+ (1− π1)

1
σ2
exp

[
−(xi − µ2)2

2σ22

])
(28)

Nyní celou rovnici zlogaritmujeme. Dostáváme tedy

ln
(
L(µ1, µ2, σ

2
1, σ

2
2, π1)

)
= −n

2
ln(2π)+

+
n∑

i=1

ln
(

π1
σ1
exp

[
−(xi − µ1)2

2σ21

]
+
1− π1

σ2
exp

[
−(xi − µ2)2

2σ22

])
(29)
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Spočítáme-li parciální derivace podle všech pěti parametrů a položíme je rovny

nule, získáme soustavu věrohodnostních rovnic, jejímž řešením bude maximálně

věrohodný odhad vektoru parametrů (µ1, µ2, σ21, σ
2
2 , π1). Pro zjednodušení zápisu

si označme argument logaritmu v rovnici (29) symbolem ⊙ a místo označení
L(µ1, µ2, σ21, σ

2
2, π1) budeme používat pouze L. Pak mají parciální derivace násle-

dující podobu

∂lnL
∂µ1

=
n∑

i=1

(⊙)−1π1(xi − µ1)
σ31

exp

[
−(xi − µ1)2

2σ21

]
(30)

∂lnL
∂µ2

=
n∑

i=1

(⊙)−1 (1− π1)(xi − µ2)
σ32

exp

[
−(xi − µ2)2

2σ22

]
(31)

∂lnL
∂σ1

=
π1
σ21

n∑

i=1

(⊙)−1 exp
[
−(xi − µ1)2

2σ21

](
1
σ21
(xi − µ1)2 − 1

)
(32)

∂lnL
∂σ2

=
1− π1

σ22

n∑

i=1

(⊙)−1 exp
[
−(xi − µ2)2

2σ22

](
1
σ22
(xi − µ2)2 − 1

)
(33)

∂lnL
∂π1

= − n

2π1
+

n∑

i=1

(⊙)−1
(
1
σ1
exp

[
−(xi − µ1)2

2σ21

]
− 1

σ2
exp

[
−(xi − µ2)2

2σ22

])
.

(34)

Položíme-li výše uvedené parciální derivace rovny nule, nalezneme maximálně

věrohodné odhady parametrů µ1, µ2, σ
2
1, σ

2
2 a π1. V tomto případě to ovšem není

zcela jednoduché vzhledem k velkému počtu složek a počtu dat.

2.2 Maximálně věrohodné odhady µ a Σ

Ukázali jsme si postup jak určit maximálně věrohodné odhady pro náhodnou

veličinu (smíšenou distribuci z normálního rozdělení). Teď si předvedeme postup

v případě náhodného vektoru z normálního rozdělení (viz [1]).
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Příklad 2.2 Mějme Y 1, . . . , Y n náhodný výběr z p-rozměrného normálního roz-

dělení s parametry µ a Σ. Abychom mohli určit maximálně věrohodné odhady

parametrů µ a Σ, musíme opět sestavit věrohodnostní funkci, kterou budeme

posléze maximalizovat při daných pevných hodnotách y. Věrohodnostní funkce

bude ve tvaru

L(µ,Σ) =
n∏

i=1

(2π)−
p

2 |Σ|−
1

2 exp
{
−1
2
(yi − µ)T Σ−1 (yi − µ)

}
(35)

Teď je nutno věrohodnostní funkci vhodně upravit.

L(µ,Σ) = (2π)−
np

2 |Σ|−
n

2 exp

{
−1
2

n∑

i=1

(yi − µ)T Σ−1 (yi − µ)

}
=

= (2π)−
np

2 |Σ|−
n

2 exp

{
−1
2
Tr

[
Σ−1

n∑

i=1

(yi − µ) (yi − µ)T
]}

.

Jako v předchozím využijeme výhod počítání s přirozeným logaritmem, tudíž

lnL(µ,Σ) = −np

2
ln2π − n

2
ln |Σ| − 1

2

n∑

i=1

(yi − µ)T Σ−1 (yi − µ) =

=
np

2
ln2π − n

2
ln |Σ| − 1

2
Tr

[
Σ−1

n∑

i=1

(yi − µ) (yi − µ)T
]

.

Nyní hledáme maximum lnL(µ,Σ). Určíme parciální derivace podle µ a Σ.

∂

∂µ
lnL(µ,Σ) = −1

2

n∑

i=1

2Σ−1 (yi − µ) != 0. /Σ

Dostáváme výsledný odhad vektoru středních hodnot. Odhadem je výběrový prů-

měr (vztah (15)).

µ̂ =
1
n

n∑

i=1

yi = y. (36)

Obdobně budeme postupovat pro parametr Σ.

∂

∂Σ
lnL(µ,Σ) =

n

2
1

|Σ−1|
∣∣Σ−1

∣∣− 1
2

n∑

i=1

(yi − µ) (yi − µ)T != 0.
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Výsledný odhad varianční matice je ve tvaru

Σ̂ =
1
n

n∑

i=1

(yi − y) (yi − y)T =
1
n

W = S ′. (37)

Teď bychom měli ještě ukázat, že se opravdu jedná o maximum. Důkaz je uve-

den v [1]. Je vhodné podotknout, že jsme určili maximálně věrohodné odhady

v případě p-rozměrného normálního rozdělení. Kdybychom chtěli určit odhady

pro několikasložkovou smíšenou distribuci z p-rozměrného normálního rozdělení,

byli by výpočet i věrohodnostní rovnice velmi komplikované. Proto byl vyvinut

postup, který si předvedeme v následující části.

2.3 EM (Expectation-Maximization) algoritmus

2.3.1 Algoritmus pro jednorozměrná data

V praxi velmi používanou metodou odhadování parametrů smíšených dis-

tribucí je tzv. EM algoritmus (viz [6, 7]). Je to iterační algoritmus k nalezení

maximálně věrohodných odhadů. Tato metoda je užitečná hlavně tehdy, když

jednodušší metody nelze efektivně použít. Stala se standardním nástrojem sta-

tistiků a je používána v mnoha aplikacích.

Potřebujeme odhadnout parametry θ = (π1, . . . , πc−1, µ1, . . . , µc, σ
2
1, . . . , σ

2
c ).

Proto maximalizujeme logaritmickou věrohodnostní funkci danou vztahem

L(θ|y1, . . . , yn) =
n∑

i=1

ln

[
c∑

k=1

πkφ(yi;µk, σ
2
k)

]
. (38)

Předpokládáme, že složky distribuce existují v pevných proporcích a jsou dány πk.

Proto má smysl počítat pravděpodobnost, že hodnota yi patří do jedné ze složek

distribuce. Jelikož pravděpodobonost příslušnosti hodnoty yi do některé ze složek

je neznámá, potřebujeme použít například EM algoritmus k maximalizaci rovnice

(38). Pravděpodobnost, že hodnota pozorování yi patří do k-té složky distribuce

(aposteriorní pravděpodobnost), můžeme zapsat následovně

τ̂ik(yi) =
π̂kφ(yi; µ̂k, σ̂

2
k)

f̂(yi; π̂k, µ̂k, σ̂2k)
, k = 1, . . . , c; i = 1, . . . , n, (39)
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kde

f̂(yi; π̂k, µ̂k, σ̂
2
k) =

c∑

k=1

π̂kφ(yi; µ̂k, σ̂
2
k). (40)

Vidíme, že aposteriorní pravděpodobnost je odhadována na základě jiných od-

hadů. K získání maxima funkce (38) musíme najít první parciální derivace podle

všech parametrů a položit je rovny nule. Tím dostaneme věrohodnostní rovnice.

Jejich řešením jsou

π̂k =
1
n

n∑

i=1

τ̂ik, (41)

µ̂k =
1
n

n∑

i=1

τ̂ikyi

π̂k

(42)

σ̂2k =
1
n

n∑

i=1

τ̂ik(yi − µ̂k)2

π̂k

. (43)

EM algoritmus je dvoukrokový proces skládající se z E-kroku a M-kroku. Tyto

kroky se opakují dokud odhadované hodnoty parametrů nekonvergují. Podívejme

se blíže co jednotlivé kroky obnášejí.

E-krok: Spočítáme aposteriorní pravděpodobnost, že i-té pozorování náleží

do k - té složky, která je dána aktuálními parametry. Použijeme rovnici (39).

M-krok: Aktualizujeme odhady parametrů použitím aposteriorní pravděpodob-

nosti a rovnic (41) až (43).

Celý EM algoritmus pro odhad parametrů smíšené distribuce z normálních

rozdělení můžeme shrnout do následujících 5 kroků.

EM procedura

1. Určete počet složek distribuce (c).

2. Určete počáteční odhad parametrů složek smíšené distribuce (tj. určit od-

hady vah složek, středních hodnot a rozptylů).
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3. Pro každý bod yi určete aposteriorní pravděpodobnost použitím rovnice

(39) a aktuálních hodnot parametrů. Provádíme E-krok.

4. Aktualizujte váhy složek, střední hodnoty a rozptyly použitím rovnic (41)

až (43). Provádíme M-krok.

5. Opakujte kroky 3 a 4 dokud odhady konvergují.

Ve kroku 5 prakticky pokračujeme iteracemi dokud se změna hodnot odhadů

ve dvou po sobě jdoucích iteracích neblíží určené toleranci. Je dobré si uvědomit,

že při použití EM algoritmu používáme celý vzorek, což zejména pro velké vzorky

klade větší nároky na výpočty.

Jak lze z dat určit počáteční hodnoty parametrů πi, µi a σi? Asi nejjedno-

dušším způsobem je setřídit data vzestupně podle naměřených hodnot. Potom

v závislosti na předpokládaném počtu složek (c) soubor dat rozdělíme na polo-

viny, třetiny atd. Prvotním odhadem vah bude πi = 1
c
. Střední hodnoty a rozptyly

odhadneme výběrovým průměrem (13) a empirickým rozptylem (14) spočítanými

pro každou c-tinu souboru.

2.3.2 Algoritmus pro vícerozměrná data

V případě vícerozměrných dat se v odhadovaných parametrech změní roz-

ptyly na varianční matice a pochopitelně se také změní rozměr vektoru středních

hodnot. Odhadujeme tedy θ = (π1, . . . , πc−1, µ1, . . . , µc,Σ1, . . . ,Σc). Budeme ma-

ximalizovat logaritmickou věrohodnostní funkci

L(θ|y1, . . . , yn) =
n∑

i=1

ln

[
c∑

k=1

πkφ(yi;µk,Σk)

]
. (44)

Řešení věrohodnostních rovnic bude analogické. Dostaneme jej ve tvaru

π̂k =
1
n

n∑

i=1

τ̂ik, (45)

µ̂k =
1
n

n∑

i=1

τ̂ikyi

π̂k

(46)
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Σ̂k =
1
n

n∑

i=1

τ̂ik(yi − µ̂k)(yi − µ̂k)
T

π̂k
. (47)

EM procedura bude mít stejný průběh jako v předchozí části. Větší problém

vyvstane, když budeme chtít nějakým způsobem určit prvotní odhady všech pa-

rametrů. Postup jak určit prvotní odhady středních hodnot a variančních matic

v případě vícerozměrných dat je uveden dále v kapitole 4. Jakmile získáme prvotní

odhady všech potřebných parametrů, můžeme použít EM algoritmus. V další ka-

pitole si ukážeme, jakým způsobem lze metodu maximální věrohodnosti resp. EM

proceduru použít při řešení praktické úlohy.
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3 Příklad jednorozměrný

3.1 Motivace

Budeme aplikovat problematiku smíšených distribucí na studii, která byla za-

dána Laboratoří experimentální medicíny při Dětské klinice LF UP a FN v Olo-

mouci. Studie zkoumá význam proteinů mnohočetné lékové rezistence u léčby

astma bronchiale a nespecifických střevních zánětů. Bližší vysvětlení studie po-

skytl MUDr. Petr Džubák (viz následující odstavce).

Jedním ze zkoumaných proteinů je P-glykoprotein (P-gp). Je to transmem-

bránová pumpa, která transportuje řadu lipofilních látek včetně glukokortikoste-

roidů. Proto se soudí, že zvýšené množství P-glykoproteinu a dalších transport-

ních proteinů je důvodem rezistence na léčbu u nespecifických střevních zánětů,

astma bronchiale a samozřejmě u nádorových onemocnění. Současně bylo po-

psáno množství genetických variací genu pro tento protein, přičemž některé z nich

měly vztah ke stabilitě a funkci proteinu. Data, která v minulých analýzách hod-

notila pouhé množství P-gp byla značně nehomogenní a mohla být ovlivněna

vlastní metodikou stanovení. Proto, abychom postihli i tyto odchylky, plánujeme

provést mnohem komplexnější analýzu. Jako první bude vyšetřeno množství pro-

teinů lékové rezistence P-gp na lymfocytech periferní krve a to za použití imu-

nofluorescenčních technik průtokové cytometrie. Množství proteinů bude srovná-

váno s klinickým stavem pacientů, genetickým profilem a expresí genů1 na úrovni

mRNA.

Výsledky, které jsme získali v pilotních experimentech, ukazují, že množství

P-glykoproteinu se na lymfocytech periferní krve liší a stratifikuje je do několika

skupin s nízkým, středním a vysokým množstvím P-gp. Přitom každý pacient

je odlišný, jak množstvím P-gp, tak množstvím skupin. Software, který běžně

používáme pro hodnocení flow cytometrických dat neumožňuje mnohorozměrnou

analýzu křivek za použití matematického modelování. Proto je pro nás zajímavé

1Exprese genu ( také genová exprese) je proces, kterým je v genu uložená informace převe-
dena v reálně existující buněčnou strukturu nebo funkci. Tomu reálně odpovídá několikakroková
syntéza proteinu, který tomuto genu (tedy sekvenci jeho DNA) odpovídá (je jím kódován) a
kterým (a nebo skrze něj) je později daná funkce realizována (viz [3]).
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vytvoření matematického nástroje, který bude umět proložit těmito histogramy

křivky a případně odlišit jednotlivé skupiny a to i na základě jiných parametrů,

jako je velikost a granularita. Výstupem by měly být obecně používané statis-

tické veličiny, popisující jednotlivé vzorky (medián, průměr, variační koeficient a

další). V ideálním případě by bylo vhodné propojení této analýzy do komplexu

mnohorozměrných analýz hodnotících vztahy mezi klinickým stavem pacienta,

jeho antropometrickými parametry a parametry molekulární biologie a genetiky.

Tato studie si klade za cíl zjistit vztah mezi odpovědí na terapii a proteiny mno-

hočetné lékové rezistence, přičemž výstupem by v dlouhodobém horizontu mohla

být optimalizace a individualizace cílené terapie výše zmíněných pacientů.

3.2 Postup

Naším úkolem bude zjistit počet skupin a rozdělení P-gp do těchto skupin

pro každého pacienta.

Příklad budeme řešit pomocí EM algoritmu. K dispozici máme vzorky od 8

pacientů. Každý vzorek obsahuje několik tisíc měření, které budou tvořit náš

náhodný výběr. U každěho pacienta nejprve provedeme úvahu o počtu složek

distribuce. Ten lze zjistit například vytvoříme-li histogram z naměřených dat.

Podle tvaru histogramu usoudíme na počet složek. Naměřené hodnoty pak vze-

stupně setřídíme a rozdělíme je na tolik částí, kolik je počet složek. Pro každou

část takto rozděleného souboru spočítáme výběrový průměr a výběrový rozptyl.

Tímto získáme včechny prvotní odhady vah (1/počet složek), středních hodnot a

rozptylů složek smíšené distribuce. Pak můžeme použít EM algoritmus.

Při počítání v Matlabu použijeme proceduru csfinmix, která nám pro zadané

vstupní parametry spočítá odhady parametrů π1, . . . , πc;µ1, . . . , µc a σ21 , . . . , σ
2
c .

Procedura má následující syntaxi:

[wts,mus,vars] = csfinmix(DATA,[µ1, . . . , µc],[σ21 , . . . , σ
2
c ],[π1, . . . , πc],Iterace,Tol),

kde [wts,mus,vars] jsou získané odhadované hodnoty parametrů v pořadí: váhy
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složek, střední hodnoty a rozptyly. Parametr DATA je vektor naměřených hodnot,

pak následují vektory prvotních odhadů středních hodnot, rozptylů a vah složek.

Parametr Iterace nám určuje maximální počet iterací, které bude algortimus po-

čítat, a parametr Tol nám dává omezení na výpočet. Zadáme si jím hraniční

hodnotu rozdílu počítaných parametrů smíšené distribuce ve dvou po sobě jdou-

cích iteracích. Bude-li rozdíl všech hodnot parametrů distribuce ve dvou iteracích

jdoucích za sebou menší než tato hranice, výpočet se zastaví. Parametry Iterace

a Tol zadáváme omezení na výpočet.

3.3 Výpočet

3.3.1 1. pacient

Nejdříve si vytvořme histogram, ze kterého pak provedeme odhad počtů složek

ve smíšené distribuci.
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Obrázek 13: Histogram četností hodnot P-gp v intervalech délky 10
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Z histogramu vidíme, že hodnoty P-gp u 1. pacienta můžeme vysvětlit dvou,

případně třísložkovou smíšenou distribucí. Zkusme tedy spočítat parametry těchto

distribucí. Nejprve uvažujme případ dvousložkové smíšené distribuce. Z dat spo-

čítáme prvotní odhady parametrů. Dostaneme tedy π1 = 0, 5; π2 = 0, 5;µ1 =

248, 2608;µ2 = 500, 2781; σ21 = 2863, 8489 a σ22 = 14135, 4044. Na základě těchto

hodnot spočítáme pomocí EM algoritmu přesnější odhady parametrů této distri-

buce. Ukažme si nyní blíže, jak budou vypadat jednotlivé iterace a jaké budou

změny hodnot parametrů (viz tabulka 2). Zdrojový kód k histogramu nalezneme

v příloze A5.

Poznámka: Počáteční hodnoty rozptylů σ21 a σ22 jsou počítány pomocí funkce

VAR v programu MS Excel. Ta ovšem používá ve jmenovateli pro výpočet výbě-

rového rozptylu n namísto n− 1. Tento rozdíl se však vzhledem k velkému počtu
dat projeví minimálně a iterační postup jej prakticky vymaže.

Vidíme, že hodnoty parametrů se ustalují při toleranci 0,0001 až po dvousté

iteraci (viz tabulka 2). V našem případě ovšem tolerance 0,0001 představuje velmi

přísný požadavek, neboť zadaná data jsou celočíselného charakteru. Spočítejme

tedy stejným způsobem odhady parametrů, uvažujeme-li třísložkovou smíšenou

distribuci a získané hodnoty porovnejme. Pro zajímavost si ještě spočítejme pa-

rametry, uvažujeme-li obyčejné normální rozdělení. Získané výsledky jsou v ná-

sledující tabulce 3.
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Tabulka 2: Průběh iterací
iterace π1 π2 µ1 µ2 σ21 σ22
0 0,5 0,5 248,2608 500,2781 2863 14135
1 0,5033 0,4967 254,9605 495,1409 3548 16450
2 0,5100 0,4900 258,9748 494,2660 3871 17487
3 0,5163 0,4837 261,3258 494,8277 4056 17919
4 0,5219 0,4781 262,7587 496,0202 4174 18037
5 0,5271 0,4729 263,6886 497,5100 4255 17988
6 0,5318 0,4682 264,3412 499,1346 4315 17849
7 0,5363 0,4637 264,8401 500,8081 4362 17665
8 0,5405 0,4595 265,2531 502,4841 4400 17457
9 0,5445 0,4555 265,6178 504,1370 4434 17240
10 0,5483 0,4517 265,9547 505,7528 4465 17021
11 0,5520 0,4480 266,2750 507,3240 4493 16804
12 0,5555 0,4445 266,5847 508,8466 4520 16592
13 0,5589 0,4411 266,8869 510,3187 4545 16386
14 0,5621 0,4379 267,1830 511,7396 4570 16186
15 0,5652 0,4348 267,4736 513,1092 4594 15994
16 0,5682 0,4318 267,7587 514,4276 4617 15808
17 0,5711 0,4289 268,0384 515,6956 4640 15630
18 0,5738 0,4262 268,3123 516,9135 4661 15459
19 0,5764 0,4236 268,5800 518,0824 4683 15296
20 0,5789 0,4211 268,8414 519,2029 4703 15139
21 0,5813 0,4187 269,0960 520,2761 4723 14989
22 0,5836 0,4164 269,3438 521,3029 4743 14846
23 0,5857 0,4143 269,5843 522,2844 4762 14710
24 0,5878 0,4122 269,8174 523,2217 4780 14580
25 0,5898 0,4102 270,0431 524,1161 4798 14456
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
100 0,6234 0,3766 274,4408 539,4936 5158 12394
101 0,6234 0,3766 274,4435 539,5022 5159 12393
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
205 0,6237 0,3763 274,4845 539,6302 5162 12377
206 0,6237 0,3763 274,4845 539,6303 5162 12377

Tabulka 3: Odhady parametrů smíšených distribucí 1. pacienta
Parametry

c π µ σ2

1 1 374,2695 24377,82
2 (0,6237; 0,3763) (274,4845; 539,6303) (5162; 12377)
3 (0,6253; 0,3103; 0,0644) (273,911; 512,405; 683,371) (5064; 8661; 2428)
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Pomocí výše uvedených dat si sestrojme grafy a dF ploty příslušných hustot

(viz obrázek 14, kód analogicky podle A1, A2) a porovnejme je. Při vizualizaci

dF plotů v Matlabu byly při výpočtu směrodatné odchylky stokrát zvětšeny

pro zachování názornosti.
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Obrázek 14: Srovnání grafů hustot a dF plotů pro P-gp 1. pacienta pro jedno,
dvou a třísložkovou smíšenou distribuci. Směrodatné odchylky u dF plotů jsou
100 krát zvětšeny

Z tabulky 3 a obrázku 14 vidíme, že při přechodu ze dvousložkové na tříslož-

kovou smíšenou distribuci se 1. složka prakticky nezměnila, zatímco 2. složka se

rozdělila ve dvě.

Otázkou teď je, která z distribucí nejlépe odpovídá skutečnosti. Z jistotou lze

říci, že to určitě nebude obyčejné normální rozdělení. Zkusme tedy ještě srovnat

grafy hustot s histogramem (viz obrázek 15, kód příloha A6) a podívejme se

na výsledek.

Vidíme, že spíše bychom byli pro použití distribuce se třemi složkami, která
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Obrázek 15: Srovnání histogramu s hustotami dvou a třísložkové smíšené distri-
buce pro P-gp 1. pacienta

zejména pro vyšší hodnoty P-gp lépe odpovídá histogramu. Pro přesnější rozhod-

nutí je možno využít shlukové analýzy a vhodných statistických testů (viz [8]),

což ovšem překračuje rámec této práce.

3.3.2 2. pacient

U 2. pacienta můžeme na základě histogramu četností P-gp (viz obrázek 16,

kód analogicky podle A5) předpokládat 2 složky s přibližně stejnou vahou. Spo-

čítejme opět střední hodnoty, rozptyly a váhy složek, uvažujeme-li 2 složky a

porovnejme je s hodnotami, uvažujeme-li 3 složky. Spočtené hodnoty jsou uve-

deny v tabulce 4.

Tabulka 4: Odhady parametrů smíšených distribucí 2. pacienta
Parametry

c π µ σ2

2 (0,4919; 0,5081) (346,275; 521,134) (3430; 3188)
3 (0,5533; 0,026; 0,4208) (356,119; 634,438; 515,83) (4091; 802; 1743)

Vidíme, že v případě třísložkové smíšené distribuce má 2. složka pouze 2,6%

váhu. Proto bychom ji mohli i vypustit. Porovnáme-li střední hodnoty složek

jednotlivých distribucí, tak se příliš neliší. Podívejme se proto jak vypadá graf,

složíme-li dohromady histogramy četností a grafy hustot dvou a třísložkovkých

distribucí P-gp 2. pacienta (viz obrázek 17, kód analogicky podle A6).
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Obrázek 16: Histogram četností hodnot P-gp v intervalech délky 10

Na první pohled se grafy příliš neliší, ale je patrné, že přítomnost 3. složky

lépe koresponduje s histogramem pro vyšší hodnoty P-gp. Všimněme si, že za-

tímco u dvousložkové distribuce jsou si váhy složek téměř rovny, což vizuálně po-

známe podle velikosti „kopcůÿ, tak u třísložkové distribuce má větší váhu složka

se střední hodnotou 515,8. I pro nižší hodnoty P-gp se jeví model třísložkové

smíšené distribuce nepatrně lépe.

Matematicky bychom se asi opět přiklonili k variantě se třemi složkami, ale

záleží na ošetřujícím lékaři, který model použije, zvláště pak, vezmeme-li v uváhu

nízkou váhu 2. složky v třísložkové smíšené distribuci, kvůli které by z lékařského

hlediska mohla být tato složka vypuštěna.

Podívejme se ještě na průběh P-gp u dalšího pacienta. Vyberme si pacienta,

jehož histogram četností P-gp se poměrně značně odlišuje od ostatních.
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Obrázek 17: Srovnání histogramu s hustotami dvou a třísložkové smíšené distri-
buce pro P-gp 2. pacienta

Poznámka: Ve studii se jedná o 4. pacienta. V našem příkladu to však bude 3.

a poslední pacient.

3.3.3 3. pacient

Podívejme se opět na histogram četností P-gp (obrázek 18, kód analogicky

podle A5) a prověďme úvahu o počtu složek. Na první pohled lze očekávat „oby-

čejnéÿ normální rozdělení, případně lze použít distribuci se dvěma složkami. Hod-

noty získané výpočty nám ukazuje tabulka 5.

Tabulka 5: Odhady parametrů smíšených distribucí 3. pacienta
Parametry

c π µ σ2

1 1 412,9849 12436
2 (0,2209; 0,7791) (272,92; 452,701) (3995; 7688)

Srovnejme nyní grafy hustot získaných na základě parametrů z tabulky 5

s histogramem četností (viz obrázek 19, kód analogicky podle A6).

Vidíme, že i v tomto případě lépe opovídá dvousložková smíšená distribuce,

nicméně i normální rozdělení nepopisuje P-gp u 3. pacienta s příliš velkými odchyl-

kami. Jako i v předchozích případech se ukázalo, že hustoty smíšených distribucí

s větším počtem složek lépe odpovídají histogramu četností P-gp.
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Obrázek 18: Histogram četností hodnot P-gp v intervalech délky 10

3.4 Shrnutí

Ukázali jsme si, jak vypadají smíšené distribuce pro P-gp u jednotlivých pa-

cintů. Je zřejmé, že pro každého pacienta mají jiný průběh. Proto je dobré léčbu

odvíjet v závislosti na získaných tvarech hustot P-gp pro každého pacienta, pro-

tože při všeobecné standardizaci by léčba nemusela být efektivní. Z 8 pacientů

pouze u 1 vykazovaly hodnoty P-gp možnost použití normálního rozdělení (paci-

ent 3). U zbývajících 7 se chovalo jako dvou nebo třísložková smíšená distribuce.

Je zajímavé, že u 4 pacientů měla větší váhu složka popisující nižší hodnoty P-gp

(pacient 1) a u 3 měla naopak větší váhu složka popisující vyšší hodnoty P-gp

(pacient 2). Lze předpokládat, že čím více složek v modelu použijeme, tím lépe

odpovídá histogramu četností P-gp. Což se ukázalo u všech 3 pacientů. Vzhledem

k poměrně velké variabilitě P-gp u pacientů je přínosné dále tuto problematiku
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Obrázek 19: Srovnání histogramu s hustotami normálního rozdělení a dvouslož-
kové distribuce pro P-gp 4. pacienta

zkoumat, abychom docílili co největší efektivity a specializace léčby u každého

pacienta. Nyní přejděme k další části, ve které se budeme věnovat stejné pro-

blematice, ale situace se zkomplikuje tím, že budeme uvažovat dvourozměrné

smíšené distribuce.
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4 Příklad dvourozměrný

Ve skutečnosti se studie z předchozího příkladu nezabývala pouze jedním, ale

hned třemi proteiny jimiž jsou P-gp, MRP a LRP. Proto budeme analyzovat

stejná data, ale pouze ve dvojrozměrném případě. Při větším počtu složek ná-

hodného vektoru roste totiž počet odhadovaných parametrů a to komplikuje a

zpomaluje výpočty. Je totiž nutno odhadnout váhy složek c − 1 parametrů, pří-
slušné středních hodnoty cp parametrů a taky prvky variačních maticí cp(p+1)/2

parametrů, kde p je rozměr vektoru. To dává pro dvousložkové a dvourozměrné

smíšené distribuce 11 parametrů. Kdybychom chtěli analyzovat všechny 3 pro-

teiny, tak při dvousložkové distribucí dostáváme celkem 19 parametrů a navíc

bychom nebyli schopni výsledné distribuce graficky znázornit.

4.1 Postup

Opět použijeme funkci csfinmix, tentokrát ale s jinými vstupními parametry.

[wts,mus,vars] = csfinmix(DATA,[µ1, . . . , µc],[Σ1, . . . ,Σc],[π1, . . . , πc],Iterace,Tol)

V úloze bychom mohli obecně odhadovat parametry π1, . . . , πc, µ1, . . . , µc a

Σ1, . . . ,Σc. My se ale omezíme pouze na smíšené distribuce ve tvaru (11). Jelikož

výše zmíněné parametry jsou vstupy funkce csfinmix, je nutné stanovit počáteční

odhady těchto parametrů. Nyní si ukážeme jak.

Máme dáno opakované měření P-gp a MRP v matici DATA s rozměry n× 2.
V případě jedné proměnné stačilo soubor dat setřídit dle velikosti, rozdělit na části

dle uvažovaného počtu složek a na základě tohoto rozdělení určit počáteční

střední hodnoty a rozptyly. Zde to již nebude tak jednoduché. Je nutno dvojroz-

měrná data nějak transformovat, abychom provedli dělení souboru na tolik částí

kolik uvažujeme složek. Provedeme proto projekci dat, jež se všechna nachází

v prvním kvadrantu, na přímky dané směrovými vektory fi. Projekci provedeme

následujícím způsobem:

hi = DATA ∗ fi, i = 1, 2, 3, 4, 5, 6. (48)
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Vektory fi zvolíme následovně:

f1 =
(
cos 0
sin 0

)
, f2 =

(
cos 22.5
sin 22.5

)
, f3 =

(
cos 45
sin 45

)
,

f4 =

(
cos 67.5
sin 67.5

)
, f5 =

(
cos 90
sin 90

)
, f6 =

(
cos 135
sin 135

)
.

Touto operací získáme 6 vektorů délky n. Z nich vytvoříme histogramy (viz ob-

rázek 20). Identifikaci 2 složek smíšené distribuce provedeme orientačně a to podle

vzdálenosti dvou největších „kopcůÿ v histogramech. Vybereme 2 histogramy, kde

jsou kopce nejvzdálenější, a na základě těchto dvou vypočteme souřadnice µ̂1 a

µ̂2. Platí totiž, že

fT
1 µ1 = a1, fT

1 µ2 = a2, fT
2 µ1 = b1, fT

2 µ2 = b2. (49)

Parametry a1, a2, b1 a b2 jsou hodnoty, které odpovídají x-ovým souřadnicím

vrcholů kopců, přičemž a1 a a2 získáme z prvního histogramu a b1 a b2 z druhého.

Máme tedy 4 lineární rovnice se 4 neznámými µ11, µ12, µ21, a µ22. Vyřešíme je

a získáme tak prvotní odhady středních hodnot pro proceduru csfinmix. Teď už

zbývá jen určit odhady prvků variačních matic. Váhy složek vezmeme v poměru

1:1. Pro odhad variačních matic rozdělíme soubor dat na dvě části a to pomocí

přímky, která bude kolmá na spojnici bodů µ̂1 a µ̂2. Z každé části pak vypočteme

odhad variační matice podle vztahu

Σ̂ =
1
n

n∑

i=1

(yi − y)(yi − y)T . (50)

Celý postup můžeme shrnout do několika kroků.

1. Určit směrové vektory

fi =

(
cosα
sinα

)
, α ∈ 〈0, 180〉 , i = 1, 2, . . .

Volit i alespoň 5.
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2. Vytvořit histogramy četností pro všechny projekce získané různou volbou

směrových vektorů.

3. Vybrat ty 2 histogramy, ve kterých jsou „kopceÿ nejvzdálenější.

4. Výpočet µ̂1 a µ̂2 pomocí rovnic (49).

5. Vést kolmici na spojnici bodů µ̂1 a µ̂2 v jejím středu, která rozdělí soubor

dat na 2 části.

6. Z každé části vypočítat empirickou varianční matici Σ̂ dle vztahu (50).

7. Pokračovat iteračním algoritmem pomocí funkce csfinmix.

4.2 Výpočet

4.2.1 1. pacient

Poznámka 4.1 Číslování pacientů se neshoduje s číslováním v jednorozměrném

případě.

Na vstupu máme dán vektor DATA, ve kterém je zaznamenáno opakované

měření P-gp a MRP. Celkem máme 17600 naměřených hodnot. Zvolíme vektory

f1 až f6, jak bylo ukázáno. A vytvoříme histogramy (viz obrázek 20, kód v příloze

A7). Podle kroku 3 vybereme první a čtvrtý histogram. Podle nich pak zvolíme

čísla a1, a2, b1 a b2. Zvolme tedy a1 = 280, a2 = 530, b1 = 500 a b2 = 1000.

Dosazením do rovnic (49) dostáváme prvotní odhad µ̂1 a µ̂2.

µ̂1 =

(
280
427, 8

)
, µ̂2 =

(
530
797, 7

)
.

Nyní určeme dělící přímku. Výpočtem dostáváme její analytický tvar:

x+ 1, 4796y − 1359, 39 = 0. (51)

Přímka dělí soubor 17600 měření v poměru 12922:4678 (data ležící pod:nad přím-

kou). Teď lze spočítat empirické varianční matice Σ̂1 a Σ̂2.

Σ̂1 =

(
8459 7289
7289 15038

)
, Σ̂2 =

(
9194 5560
5560 12532

)
.
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Obrázek 20: Histogramy četností po projekci na různé směry

Máme tedy všechny potřebné parametry pro použití funkce csfinmix. Po prove-

dení 50 iterací dostáváme výsledné odhady parametrů smíšené distribuce:

π̂ = 0, 7087, µ̂1 =

(
294, 0
387, 2

)
, µ̂2 =

(
569, 7
729, 3

)
,

Σ̂1 =

(
7802 7137
7137 15880

)
, Σ̂2 =

(
10005 8494
8494 17133

)
.

Výslednou smíšenou distribuci lze vykreslit (viz obrázek 21, kód v příloze A8).

Vypočítejme ještě korelační koeficienty mezi jednotlivými proměnnými v obou

složkách distribuce. Zjistíme tak jestli a jaká je závislost mezi hodnotami namě-
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Obrázek 21: Graf odhadnuté smíšené distribuce pro 1. pacienta

řených proteinů. Výsledné hodnoty jsou

ρ1(P−gp,MRP ) = 0, 6412, ρ2(P−gp,MRP ) = 0, 6488.

Mezi proteiny je tedy poměrně vysoká kladná závislost, které si všimneme na ob-

rázku 22. Tento obrázek je horním pohledem na graf odhadnuté smíšené dis-

tribuce z obrázku 21. Kladná závislost se projeví protáhlým tvarem vrstevnic

smíšené distribuce ve směru osy prvního a třetího kvadrantu. Pro zajímavost

si ještě vykresleme distribuční funkci odpovídající odhadnuté smíšené distribuce

pro prvního pacienta (viz obrázek 23, kód v příloze A9).

Dosud jsme se zabývali pouze odhadem parametrů smíšených distribucí ná-

hodných vektorů. Mohla a měla by nás ale také zajímat přesnost těchto odhadů.

K tomu využijeme Fisherovu informační matici.

Nyní si ukážeme jak spočítat empirickou Fisherovu informační matici máme-li

dán předpis smíšené distribuce a data. V našem případě bude Fisherova infor-

mační matice mít rozměr 11×11, protože vycházíme z předpisu smíšené distribuce
(11), který má 11 parametrů. Kvůli přehlednosti provedeme malou úpravu tohoto

vztahu. Místo parametru π použijeme parametr c. Předpis smíšené distribuce má

tvar

f(y) = c(2π)−
2

2 |Σ1|−
1

2 exp
{
−1
2
(y− µ1)

TΣ−1
1 (y− µ1)

}
+
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Obrázek 22: Korelace proteinů P-gp a MRP

+(1− c)(2π)−
2

2 |Σ2|−
1

2 exp
{
−1
2
(y− µ2)

TΣ−1
2 (y− µ2)

}
. (52)

My budeme navíc používat ln(f(y)). Budeme muset spočítat parciální derivace

f(y) podle všech 11 parametrů.

∂f(y)
∂c

= (2π)−
2

2 |Σ1|−
1

2 exp
{
−1
2
(y− µ1)

TΣ−1
1 (y− µ1)

}
−

−(2π)− 22 |Σ2|−
1

2 exp

{
−1
2
(y− µ2)

TΣ−1
2 (y− µ2)

}
.

∂f(y)
∂µ1

= c(2π)−
2

2 |Σ1|−
1

2 exp

{
−1
2
(y− µ1)

TΣ−1
1 (y− µ1)

}

︸ ︷︷ ︸
k

∗

∗ ∂

∂µ1

[
−1
2

(
yTΣ−1

1 y− 2µT
1Σ

−1
1 y+ µT

1Σ
−1
1 µ1

)]
=

44



0
200

400
600

800
1000

0

200

400

600

800

1000
0

0.2

0.4

0.6

0.8

1

PgP

Distribucni funkce 1. pacient

MRP

Obrázek 23: Distribuční funkce odpovídající odhadlé smíšené distribuci prvního
pacienta

= k

[
−1
2

(
−2Σ−1

1 y+ 2Σ
−1
1 µ1

)]
.

∂f(y)

∂Σ−1
1

=
∂

∂Σ−1
1

c(2π)−
2

2

︸ ︷︷ ︸
h

[∣∣Σ−1
1

∣∣] 12 exp
{
−1
2
Tr
[
(y− µ1)(y− µ1)

TΣ−1
1

]}
=

= h
1
2

[∣∣Σ−1
1

∣∣] 12 ∣∣Σ−1
1

∣∣Σ1 exp
{
−1
2
Tr
[
(y− µ1)(y− µ1)

TΣ−1
1

]}
+

+h
[∣∣Σ−1

1

∣∣] 12 exp
{
−1
2
Tr
[
(y− µ1)(y− µ1)

TΣ−1
1

]}[
−1
2
(y− µ1)(y− µ1)

T

]
.

Parciální derivace podle µ2 a Σ2 spočítáme analogicky tak, že jen prohodíme

indexy.

Poznámka: Parciální derivací funkce f(y) podle µ1 je vektor parciálních derivací

této funkce podle µ11 a µ12. Podobně parciální derivací funkce f(y) podle Σ1 je

matice složená z parciálních derivací této funkce podle jednotlivých prvků Σ1.

∂f(y)
∂µ1

=

(
∂f(y)
∂µ11
∂f(y)
∂µ12

)
,
∂f(y)
∂Σ1

=

(
∂f(y)
∂σ11

∂f(y)
∂σ12

∂f(y)
∂σ21

∂f(y)
∂σ22

)
.

Nyní již máme analyticky vyjádřeny všechny potřebné parciální derivace k vý-

počtu Fisherovy informační matice. Tu vypočítáme tak, že použijeme všechny
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naměřené hodnoty a to tak, že sestavíme sloupcový vektor všech parciálních de-

rivací, do kterých dosadíme odhadnuté parametry. Každý prvek v tomto vektoru

vydělíme ještě hodnotou f(y). Nyní vezmeme první měření a dosadíme jej do to-

hoto vektoru. Získáme tak číselný vektor. Pak vezmeme druhé měření a opět

dosadíme. Tímto způsobem získáme matici Y rozměru 11× n. Teď ještě vypoč-

teme vektor Y, kde Y = 1
n
Y1n . Odhad Fisherovy informační matice pak zjistíme

dle vztahu (53).

F̂ =
1
n
(Y− 1n ⊗Y)(Y− 1n ⊗Y)T (53)

Označíme-li β̂ = (ĉ, µ̂11, µ̂12, µ̂21, µ̂22, σ̂11, σ̂12, σ̂22, σ̂′

11, σ̂
′

12, σ̂
′

22)
T vektor odha-

dovaných parametrů, tak přesnost odhadů zjistíme z diagonály varianční matice

tohoto vektoru, na které jsou rozptyly odhadů jednotlivých parametrů. Varianční

matici získáme pomocí vypočtené Fisherovy informační matice podle vztahu 54.

var(β̂) ∼= F̂−1
. (54)
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.

Ukažme si tedy, jak vypadá diagonála var(β̂), na které jsou rozptyly odhadů

jednotlivých parametrů. Po výpočtu dostáváme hodnoty

Diag(var(β̂)) = (0, 86; 34420; 62654; 184980; 231420;
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2, 42 ∗ 10−7; 2, 49 ∗ 10−7; 4, 54 ∗ 10−8; 3, 49 ∗ 10−7; 4, 65 ∗ 10−7; 9, 34 ∗ 10−8).

Přesnost odhadů je dána směrodatnými odchylkami, které v tomto případě jsou

(0, 93; 185; 250; 430; 481; 0, 0005; 0, 0005; 0, 0002; 0, 0006; 0, 0007; 0, 0003).

Všimněme si, že odhady váhy první složky a středních hodnot mají vysoké

směrodatné odchylky vzhledem ke svým hodnotám. Především směrodatná od-

chylka odhadu váhy první složky je dokonce vyšší (0, 93) než samotný odhad pa-

rametru (0, 7087), který může nabývat hodnot pouze na intervalu (0, 1). Zatímco

odhady prvků varianční matice jsou velmi přesné. Může to být způsobeno na-

příklad špatnou volbou dělící křivky pro výpočet empirických variančních matic.

Předpoklad normality by vzhledem k vysokému počtu a charakteru dat neměl být

porušen. Srovnejme pro přehlednost ještě odhady a jejich směrodatné odchylky

do tabulky (viz tabulka 6).

Tabulka 6
Parametry

c µ11 µ12 µ21 µ22
odhad 0,7087 294,0 387,2 569,7 729,3

směrodatná odchylka 0,93 185 250 430 481
směrodatná odchylka/odhad (%) 131% 63% 65% 75% 66%

σ11 σ12 σ22 σ′

11 σ′

12 σ′

22

odhad 7802 7137 15880 10005 8494 17133
směrodatná odchylka 0,0005 0,0005 0,0002 0,0006 0,0007 0,0003

Podívejme se ještě jednou na volbu dělící křivky při výpočtu empirických

variančních matic. Určili jsme, že křivka má tvar x + 1, 4796y − 1359, 39 = 0.
Zkusme ji zakreslit do grafu společně s daty (viz obrázek 24, kód v příloze A10).

Vidíme, že dělící křivka je určena poměrně nevhodně, protože zasahuje i do dru-

hého „shlukuÿ, který vymezuje druhou složku distribuce. Proto zkusme určit dě-

lící křivku lépe. Vyzkoušením několika tvarů přímek jsme odhadli, že dělící křivka

by mohla mít tvar 4, 8x+y−2550 = 0 (viz obrázek 25, kód analogicky jako A10).
Pro tuto novou volbu vypočítejme odhady parametrů smíšené distribuce a inverzi

Fisherovy informační matice a srovnejme je s původními hodnotami.
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Obrázek 24: Volba dělící křivky

Původní odhady:

π̂ = 0, 7087, µ̂1 =
(
294, 0
387, 2

)
, µ̂2 =

(
569, 7
729, 3

)
,

Σ̂1 =

(
7802 7137
7137 15880

)
, Σ̂2 =

(
10005 8494
8494 17133

)
.

Nové odhady:

π̂ = 0, 6553, µ̂1 =
(
278, 9
381, 5

)
, µ̂2 =

(
557, 1
688, 7

)
,

Σ̂1 =

(
5433 6273
6273 16944

)
, Σ̂2 =

(
10158 11897
11897 25043

)
.

Vidíme, že odhady středních hodnot se nepatrně posunuly, i důležitost složek

v distribuci se moc nezměnila. Hodnoty v první varianční matici se snížily, tudíž

máme menší rozptýlenost hodnot kolem střední hodnoty, ale ve druhé varianční

matici se hodnoty naopak zvýšili. Celkově lze říci, že nová volba dělící křivky příliš

odhady nezlepšila, i když, jak uvidíme dále, nějaké pozitivní změny proběhly.

Nakonec se ještě podívejme na inverzi Fisherovy informační matice, respektive
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Obrázek 25: Nová volba dělící křivky

na její diagonálu. Připomínám, že nás znepokojovali vysoké směrodatné odchylky

odhadů středních hodnot a váhy první složky distribuce. Prvky z diagonály jsou

uspořádány ve vektoru

(0, 78; 142; 217; 339; 409; 0, 0008; 0, 0006; 0, 0002; 0, 0007; 0, 0007; 0, 0002).

Srovnejme opět nové odhady parametrů s příslušnými směrodatnými odchylkami

v tabulce 7.

Tabulka 7
Parametry

c µ11 µ12 µ21 µ22
odhad 0,6553 278,9 381,5 557,1 688,7

směrodatná odchylka 0,78 142 217 339 409
směrodatná odchylka/odhad (%) 119% 51% 57% 61% 59%

σ11 σ12 σ22 σ′

11 σ′

12 σ′

22

odhad 7802 7137 15880 10005 8494 17133
směrodatná odchylka 0,0008 0,0006 0,0002 0,0007 0,0007 0,0002

Je vidět, že přesnější volba dělící čáry pomohla ke zpřesnění odhadů. To orien-

tačně měříme podle procentuálního podílu hodnoty směrodatné odchylky a hod-

noty odhadu. Při původní volbě dělící čáry jsou tyto podíly přibližně o 10− 20
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procentních bodů vyšší než při zpřesněné volbě dělící čáry. Sledovat podíly u hod-

not odhadů prvků variančních matic je v tomto případě bezpředmětné. Na zá-

kladě tohoto zjištění by se dalo usuzovat, že čím přesnější volba dělící čáry bude,

tím přesnější odhady dostaneme.

4.2.2 2. pacient

Zkusme ještě stejným postupem odhadnout parametry pro jiného pacienta,

abychom se přesvědčili o jedinečnosti hodnot P-gP a MRP u každého pacienta.

Připomeňme si raději, že průběh hodnot P-gp a MRP modelujeme dvousložkovou

dvourozměrnou smíšenou distribucí z normálního rozdělení ve tvaru:

f(y) = πφ(y;µ1,Σ1) + (1− π)φ(y;µ2,Σ2), (55)

Stejně jako v předchozí části musíme nejprve určit prvotní odhady všech 11 para-

metrů, abychom mohli použít proceduru csfinmix. Vektory fi volíme stejně. Poté

provedeme projekce dat a získáme vektory hi (podle vztahu (48)). Pro každý vek-

tor hi vytvoříme histogram četností, abychom mohli určit hodnoty a1, a2, b1, b2,

pomocí kterých určíme prvotní odhady µ̂1 a µ̂2 (viz 49). Podívejme se na to, jak

histogramy hodnot z vektorů hi vypadají (viz obrázek 26, kód analogicky jako

A7).

Teď bychom měli vybrat ty dva histogramy, jejichž „kopceÿ jsou nejvzdále-

nější. V tomto případě to není tak jednoznačné. Vyberme tedy histogram h2 a

pro lehčí výpočty h5. Hodnoty a1, a2, b1, b2 volíme následovně: a1 = 390, a2 =

630, b1 = 300, b2 = 520. Vypočteme prvotní odhady jsou

µ̂1 =

(
297, 7
300

)
, µ̂2 =

(
466, 3
520

)
.

Teď nám chybí určit jen prvotní odhady variančních matic Σ̂1 a Σ̂2. K tomu

potřebujeme data rozdělit. Z předchozího příkladu víme, že bychom měli dělící

čáru určit pokud možno co nejpřesněji. Na základě vykreslení všech dat jsme

určili její analytický tvar následovně:

3x+ y − 1500 = 0. (56)
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Obrázek 26: Histogramy četností po projekci na různé směry

Podívejme se na celou situaci na následujícím obrázku 27 (kód v příloze A11).

Vidíme, že jsme se přibližným postupem (tj. volbami a1, a2, b1, b2) netrefili

s hodnotami parametrů µ1 a µ2 zcela ideálně. Nicméně, odhady ponechejme a

podívejme se, jak si s touto nepřesností poradí iterační metoda csfinmix. Někdo by

mohl namítnout, že by bylo lepší určit prvotní odhady µ̂1 a µ̂2 přímo z obrázku

27. Bylo by to možné, ale pouze v případě dvourozměrné smíšené distribuce.

Při větším rozměru už nejsme schopni efektivně data znázornit, abychom mohli

provést přímý odhad. Proto se i zde držíme výše zmíněného postupu.

Vypočtěme ještě odhady parametrů Σ1 a Σ2 a použijme metodu csfinmix
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Obrázek 27: Volba dělící čáry u 2. pacienta

k určení výsledných odhadů parametrů pro 2. pacienta. Dostáváme hodnoty

Σ̂1 =
(
3303 2679
2679 6201

)
, Σ̂2 =

(
4087 4680
4680 12383

)
.

Po provedení 50 iterací dostáváme výsledné odhady parametrů smíšené dis-

tribuce:

π̂ = 0, 6251, µ̂1 =

(
252, 2
302, 2

)
, µ̂2 =

(
441, 0
584, 1

)
,

Σ̂1 =

(
3556 2848
2848 6116

)
, Σ̂2 =

(
4955 5751
5751 13951

)
.

Poznámka 4.2 Vzhledem k tomu, že operujeme se vstupními daty, které mají

cca 15000×2 hodnot, trvají výpočty poměrně dlouho. Požadované přesnosti bylo
dosaženo při použití 50 iterací a výpočet odhadů trval 244 sekund. Kdybychom

použili 60 iterací, doba výpočtu by se zvýšila na 320 sekund, při 100 iteracích

na 556 sekund. Tak bychom mohli pokračovat dále. Připomeňme si, že v případě

jednorozměrné smíšené distribuce jsme použili 206 iterací a výpočet trval jen

několik sekund.
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Nejprve se podívejme zdali a jak se změnila poloha prvotních odhadů µ̂1 a

µ̂2. Změna je znázorněna na obrázku 28 (kód analogicky jako A11). Pozorujeme,
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data [P−gp, MRP]
delici cara
mu1 prvotni odhad
mu2 prvotni odhad
mu1 konecny odhad
mu2 konecny odhad

Obrázek 28: Posun hodnot odhadů µ̂1 a µ̂2

že výsledné odhady parametrů µ1 a µ2 odpovídají datům mnohem lépe než ty

prvotní. Můžeme konstatovat, že metoda csfinmix si dokáže poradit i s neúplně

přesnými prvotními odhady parametrů.

Dále se podívejme na graf odhadnuté smíšené distribuce a na její distribuční

funkci (obrázky 29,30, kód analogicky jako A8,A9). Všimněme si velikosti „kopceÿ
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Obrázek 29: Graf odhadnuté smíšené distribuce pro 2. pacienta
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první složky, která je větší než u prvního pacienta, i přesto, že váha první složky

druhého pacienta je menší než váha první složky pacienta prvního. Příčinu této

skutečnosti můžeme pozorovat na obrázku 31 (kód analogicky jako A8). U dru-

hého pacienta jsou složky smíšené distribuce položeny blíže k sobě než u prvního.

Více se vzájemně prolínají, a to způsobuje, výše popsaný jev. Graf distribuční

funkce smíšené distribuce druhého pacienta vypadá následovně:
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Obrázek 30: Distribuční funkce odpovídající odhadlé smíšené distribuci druhého
pacienta

Doplňme ješte velikosti korelačních koeficientů mezi P-gp a MRP v obou

složkách distribuce a projekci smíšené distribuce z ptačí perspektivy (viz obrázek

31), kterou srovnáme s prvním pacientem. Na obrázku uvidíme především polohu

jednotlivých složek a jejich protažení, které je určeno korelačními koeficienty.

Korelační koeficienty mají přibližně stejné hodnoty, tudíž je zachována vzájemná

závislost mezi jednotlivými proteiny.

ρ1(P−gp,MRP ) = 0, 6107, ρ2(P−gp,MRP ) = 0, 6917.

Na závěr výpočtů se ještě zaměříme na přesnost odhadů. Opět použijeme

empirickou Fisherovu informační matici a zjistíme, jaké jsou hodnoty na diago-
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Obrázek 31: Srovnání odhadnutých smíšených distribucí obou pacientů z ptačí
perspektivy

nále var(β̂), na které jsou rozptyly odhadů jednotlivých parametrů. Po výpočtu

dostáváme hodnoty

Diag(var(β̂)) = (0, 5063; 13017; 19764; 40827; 123470;

9, 36 ∗ 10−7; 1, 05 ∗ 10−6; 3, 13 ∗ 10−7; 5, 92 ∗ 10−7; 6, 87 ∗ 10−7; 9, 86 ∗ 10−8).

Přesnost odhadů určíme pomocí směrodatných odchylek, které v tomto případě

jsou

(0, 711; 114; 141; 202; 351; 0, 0009; 0, 0010; 0, 0006; 0, 0008; 0, 0008; 0, 0003).

Opět pozorujeme, že odhady prvků variančních matic jsou velmi přesné, zatímco

odhady středních hodnot a váhy první složky přesné až tak nejsou. Pro lepší

posouzení se na přesnost odhadů podívejme v tabulce 8.

Tabulka 8
Parametry

c µ11 µ12 µ21 µ22
odhad 0,6251 252,2 302,2 441,0 584,1

směrodatná odchylka 0,711 114 141 202 351
směrodatná odchylka/odhad (%) 114% 45% 47% 46% 60%
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σ11 σ12 σ22 σ′

11 σ′

12 σ′

22

odhad 3556 2848 6116 4955 5751 13951
směrodatná odchylka 0,0009 0,0010 0,0006 0,0008 0,0008 0,0003

Nyní zkusme shrnout všechny výsledky a poznatky, kterých jsme v případě dvou-

rozměrných smíšených distribucí docílili.

4.3 Shrnutí

Ukázalo se, že metody odhadů parametrů smíšených distribucí v případě více-

rozměrných dat jsou mnohem složitější a náročnější než v případě dat jednoroz-

měrných. V našem příkladě jsme odhadli parametry dvourozměrných dvouslož-

kových smíšených distribucí pro 2 pacienty. Kdybychom chtěli data modelovat

pomocí vícesložkových (3,4,. .) smíšených distribucí, vznikaly by další problémy

typu: „Jak rozdělit soubor dat pro určení počátečních parametrů?ÿ, „Jak identifi-

kovat složky?ÿ. Proto jsme se v této práci zaměřili pouze na dvousložkové smíšené

distribuce, u kterých tyto problémy jsou poměrně snadno řešitelné.

Opět se potvrdila individualita jednotlivých pacientů v případě naměřených

hodnot P-gp a MRP, která se projevila především umístěním středních hodnot

složek. Pro větší průkaznost ještě přidáme odhadlé střední hodnoty dalšího paci-

enta a výsledky srovnáme v tabulce 9. Především hodnoty µ2 se mění poměrně

hodně. I poměr vah složek v modelech se liší. U prvního pacienta má první složka

váhu 70,91%, u druhého 62,51% a u třetího pouze 49,17%.

Tabulka 9
Srovnání odhadnutých středních hodnot

pacient 1 pacient 2 pacient 3
µ11 294 252 299
µ12 387 302 246
µ21 570 441 461
µ22 729 584 474

Váhy složek a různé hodnoty prvků odhadnutých variančních matic způsobují

to, že výsledné grafy smíšených distribucí se chovají analogicky, jak je to ukázáno

na obrázcích 8 a 9 (nejvíce jsou ovlivněny velikosti „kopcůÿ složek). Je to patrné
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na obrázku 32 (kód analogicky jako A8) , kde „kopceÿ v případě třetího pacienta

jsou různě vysoké, přestože váhy jsou téměř v poměru 1:1.

0 500 10000

500

1000
0

0.5

1

1.5

x 10
−5

Pacient 1

P−gp
MRP 0 500 10000

500

1000
0

0.5

1

1.5

2

2.5

x 10
−5

Pacient 2

P−gp
MRP 0 500 10000

500

1000
0

0.5

1

1.5

2

2.5

x 10
−5

Pacient 3

P−gp
MRP

Obrázek 32: Srovnání odhadnutých smíšených distribucí všech pacientů

Naopak korelace v datech vykazovala poměrně stabilní charakter. U první

složky jsme určili korelační koeficienty postupně 0,6412, 0, 6107 a 0,7101. U druhé

0,6488, 0,6917 a 0,7103. Dále se ukázalo, že postup, který jsme používali, dává

velmi přesné odhady prvků variančních matic v modelu, ale odhady vah a střed-

ních hodnot mají přesnost o několik řádů menší. Důležitou roli při odhadování

měla i volba dělící čáry. Pozitivně můžeme hodnotit to, že metoda csfinmix i

přes nepříliš přesné prvotní odhady středních hodnot (viz pacient 2) poskytuje

odhady, které odpovídají datům poměrně dobře.
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Závěr

Seznámili jsme se s tím, co jsou to smíšené distribuce, jak mohou vypadat a

jak lze odhadovat parametry smíšených distribucí. V první kapitole jsme si uká-

zali, že smíšené distribuce se vyznačují velkou proměnlivostí a přizpůsobitelností.

I malé změny hodnot vah, středních hodnot či prvků variančních matic mohou mít

velký vliv na celkový tvar smíšené distribuce. Právě flexibilita a rozmanitost dělá

ze smíšených distribucí užitečný nástroj pro modelování různé škály dat. Zjistili

jsme, že i přes velkou početní náročnost metody maximální věrohodnosti existuje

efektivní řešení odhadování parametrů v podobě EM algoritmu. Ten umožňuje

najít řešení věrohodnostních rovnic jednoduchým iterativním způsobem.

V našem příkladě se ukázalo, že každý z pacientů, na kterých byla studie

prováděna, má unikátní průběh P-gp a MRP. A proto je cenné, že můžeme pou-

žít metodu, která tuto nehomogenitu dokáže modelovat. Nejprve jsme modelovali

pouze průběh P-gp. V této části byl postup poměrně jednoduchý a výsledky věro-

hodně odpovídali datům. Zjistili jsme, že použití většího počtu složek v modelu

zajistí lepší analytický popis dat. Poté jsme analyzovali dvourozměrný soubor

dat (P-gp, MRP). Postup odhadování parametrů již nebyl tak jednoduchý. Mu-

seli jsme najít způsob jak data rozdělit na části, ze kterých pak bude možné určit

počáteční odhady parametrů. V obou částech jsme použili proceduru csfinmix.

Dospěli jsme k poměrně uspokojivým odhadům. Překvapivá byla rozdílnost přes-

nosti odhadů parametrů v modelu, kterou jsme určili pomocí inverze empirické

Fisherovy informační matice.

Při zpracovávání tematu jsme nenarazili na vážnější problémy. Jedním z pro-

blémů, který by bylo vhodné zkoumat, je určení počtu složek smíšené distribuce

tak, abychom jich nepoužívali zbytečně moc, ale aby také dobře popisovaly data.

K tomu je potřeba použití vhodných statistických testů, což by mohlo být před-

mětem dalšího rozšíření této práce. Další potenciální problém se týká výpočetní

techniky. Při zpracovávání dat ze studie jsme počítali s řádově tisíci údaji a to

se projevilo i na rychlosti výpočtů v programu Matlab. Obvykle nám zpracování

běžných úloh nezabere déle než několik sekund. Zde trval výpočet odhadů spolu
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s výpočtem přesností odhadů přibližně 7 minut. Proto by nás měli zajímat tech-

nické nároky na výpočty v případech, kdybychom počítali s většími objemy dat

či složitějšími vzorci. Jiný problém se týká přesnosti odhadů, která již byla výše

zmíněna.

Téma smíšených distribucí zahrnuje širokou problematiku. V naší práci jsme

se zaměřili pouze na spojité náhodné veličiny (vektory) z normálního rozdělení.

Celá tematika by si jistě zasloužila větší pozornost. Věříme, že celá práce čtenáře

obohatí a že mu poskytne nejen dostatečné množství informací o problematice,

ale dokáže i inspirovat.
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Přílohy

Příloha A1

Kód v Matlabu pro vytvoření grafu třísložkové smíšené distribuce s danými pa-

rametry

x=linspace(-6,5);

% create the model - normal components used

mix = [0.3 0.3 0.4]; % mixing coefficients

mus = [-3 0 2]; % terms means

vars = [1 1 0.5];

nterm= 3; % use Statistics toolbox function to evaluate normal pdf.

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

plot(x,fhat)

Příloha A2

Kód v Matlabu pro vytvoření dF plotu modelu třísložkové smíšené distribuce.

mu = [-3 0 2];

wts = [0.3 0.3 0.4];

covm = [1 1 0.5];

minx = -5;

maxx = 5;

csdfplot(mu,covm,wts,minx,maxx)

tick = (maxx-minx)/10;

set(gca,’Ytick’,minx:tick:maxx)

set(gca,’Xtick’,minx:tick:maxx)

set(gca,’YTickLabel’,’0|0.1|0.2|0.3|0.4|0.5|0.6|0.7|0.8|0.9|1’)

xlabel(’S’),ylabel(’V’)
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Příloha A3

Kód v Matlabu pro vytvoření grafu dvousložkových smíšených distribucí se stej-

nými vahami

x=linspace(-3,7);

mix = [0.5 0.5]; mus = [0 1]; vars = [1 1]; nterm= 2;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

subplot(2,2,1); plot(x,fhat); title(’(a)’); axis([-3 7 0 0.4]);

xlabel(’y’); ylabel(’f(y)’);

x=linspace(-3,7);

mix = [0.5 0.5]; mus = [0 2]; vars = [1 1]; nterm= 2;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

subplot(2,2,2); plot(x,fhat); title(’(b)’); axis([-3 7 0 0.4]);

xlabel(’y’); ylabel(’f(y)’);

x=linspace(-3,7);

mix = [0.5 0.5]; mus = [0 3]; vars = [1 1]; nterm= 2;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

subplot(2,2,3); plot(x,fhat); title(’(c)’); axis([-3 7 0 0.4]);

xlabel(’y’); ylabel(’f(y)’;
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x=linspace(-3,7);

mix = [0.5 0.5]; mus = [0 4]; vars = [1 1]; nterm= 2;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

subplot(2,2,4); plot(x,fhat); title(’(d)’); axis([-3 7 0 0.4]);

xlabel(’y’); ylabel(’f(y)’);

Příloha A4

Kód v Matlabu pro vytvoření dvousložkové dvourozměrné smíšené distribuce

mu = [2 2];

Sigma = [1 0 ;0 1];

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

mu = [0 0];

Sigma = [1 0 ;0 1];

x1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F2 = mvnpdf([X1(:) X2(:)],mu,Sigma);

F2 = reshape(F2,length(x2),length(x1));

fhat = 0.5*F + 0.5*F2 ;

surf(x1,x2,fhat);

%caxis([min(F(:))-.5*range(F(:)),max(F(:))]);

axis([-3 3 -3 3 0 .1])

xlabel(’x1’); ylabel(’x2’);
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Příloha A5

Kód v Matlabu pro vytvoření histogramu četností P-gp 1. pacienta

load data1sloupec %data1sloupec obsahuje namerene hodnoty

hist(Sloupec1,100)

title(’P-gp 1. pacient’)

xlabel(’Hodnota P-gp’)

ylabel(’Pocet hodnot’)

Příloha A6

Kód vMatlabu pro vytvoření grafu srovnávajícího histogram 1. pacienta a spočtené

dvou a třísložkové smíšené distribuce.

subplot(1,2,1)

load data1sloupec

[ww,xx]=ecdf(Sloupec1);ecdfhist(ww,xx,100);

hold on

x=linspace(0,1000);

mix = [0.6237 0.3763]; mus = [274.4845 539.6303];

vars = [71.84706 111.252];nterm= 2;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

plot(x,fhat);xlabel(’y’);ylabel(’f(y)’)

subplot(1,2,2)

load data1sloupec

[ww,xx]=ecdf(Sloupec1);ecdfhist(ww,xx,100);

hold on

x=linspace(0,1000);
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mix = [0.6253 0.3103 0.0644];mus = [273.9113 512.4047 683.3713];

vars = [71.166 93.06664 49.27677];

nterm= 3;

fhat = zeros(size(x));

for i= 1:nterm

fhat = fhat+mix(i)*normpdf(x,mus(i),vars(i));

end

plot(x,fhat);xlabel(’y’);ylabel(’f(y)’)

Příloha A7

Kód v Matlabu pro vytvoření histogramů četností hodnot P-gp projektovaných

na směrové vektory

load pacient1; %pacient1 je matice dat P-gp a MRP

f1 = [1;0];

f2 = [cos(pi/8);sin(pi/8)];

f3 = [1/sqrt(2);1/sqrt(2)];

f4 = [cos(3*pi/8);sin(3*pi/8)];

f5 = [0;1];

f6 = [1/sqrt(2);-1/sqrt(2)];

h1 = pacient1*f1;

h2 = pacient1*f2;

h3 = pacient1*f3;

h4 = pacient1*f4;

h5 = pacient1*f5;

h6 = pacient1*f6;

subplot(2,3,1)

hist(h1,100);

title(’f1 = [cos0 sin0]’);
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subplot(2,3,2)

hist(h2,100);

title(’f2 = [cos22.5 sin22.5]’);

subplot(2,3,3)

hist(h3,100);

title(’f3 = [cos45 sin45]’);

subplot(2,3,4)

hist(h4,100);

title(’f4 = [cos67.5 sin67.5]’);

subplot(2,3,5)

hist(h5,100);

title(’f5 = [cos90 sin90]’);

subplot(2,3,6)

hist(h6,100);

title(’f6 = [cos135 sin135]’);

Příloha A8

Kód v Matlabu pro vytvoření grafu odhadnuté smíšené distribuce 1. pacienta

%1.slozka

mu = [294.19 387.34];

Sigma = [7820 7150;7150 15889]

x1 = 0:15:1005; x2 = 0:15:1005;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

%2.slozka

mu = [569.74 729.38];

Sigma = [9997 8475; 8475 17094]

x1 = 0:15:1005; x2 = 0:15:1005;

[X1,X2] = meshgrid(x1,x2);
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F2 = mvnpdf([X1(:) X2(:)],mu,Sigma);

F2 = reshape(F2,length(x2),length(x1));

%vysledna smisena distribuce

fhat = 0.7091*F + 0.2909*F2;

surf(x1,x2,fhat);

axis([0 1005 0 1005 0 .000015])

xlabel(’P-gp’); ylabel(’MRP’);

Příloha A9

Kód v Matlabu pro vytvoření grafu odhadnuté distribuční funkce 1. pacienta

figure

MU = [294.1928 387.3435;569.7417 729.3894];

SIGMA = cat(3,[7820 7150.9;7150.9 15889.6],[9997.4 8475.3;8475.3 17094]);

p = [0.7091 0.2909];

obj = gmdistribution(MU,SIGMA,p);

ezsurf(@(x,y)cdf(obj,[x y]),[0 1000],[0 1000])

xlabel(’PgP’); ylabel(’MRP’);

title(’Distribucni funkce 1. pacient’);

Příloha A10

Kód v Matlabu pro vytvoření grafu zobrazujícího data a dělící čáru

figure

load pacient1;

scatter(pacient1(:,1),pacient1(:,2),10,’.’)

xlabel(’PgP’); ylabel(’MRP’);

hold on;
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x = [100:0.1:700];

y=(-x+1359.39)/1.4796;

plot(x,y,’red’)

Příloha A11

Kód v Matlabu pro vytvoření grafu zobrazujícího data, dělící čáru a prvotní

odhady parametrů v modelu

figure

load pacient3;

scatter(pacient3(:,1),pacient3(:,2),10,’.’)

xlabel(’PgP’); ylabel(’MRP’);

hold on;

x = [250:0.1:450];

y=-3*x+1500;

plot(x,y,’red’)

mu11=297.7;

mu12=300;

plot(mu11,mu12,’--rs’,’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’k’,’MarkerSize’,10)

mu21=466.3;

mu22=520;

plot(mu21,mu22,’--rs’,’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’g’,’MarkerSize’,10)
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