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Seznam znaceni

Znaceni prvkua

A, B,C,... body
a, b, c, ... piimky

a, B,7,...  roviny

Znaceni vzajemnych vztaht

Bep bod B nalezi piimce p
Bep bod B nélezi roviné p
pCp piimka p nélezi roviné p

p=anf  piimka p je prusecnici rovin a a 3

p = (Bp) rovina p je uréena bodem B a piimkou p
p = (ABC) rovina p je urcena body A, B, C

pLlp piimka p je kolméa na rovinu p

plq piimky p a ¢ jsou rovnobézné

d=|AB| d je vzdalenost bodu A a B



Uvod

Tato bakalarska préce se zabyva fesenim prikladu v kosothlé axonometrii. Cilem
je ¢tenafe seznamit s kosouhlou axonometrii a priblizit tuto zobrazovaci metodu na
nékolika prikladech.

Predpokladéd se znalost pravouhlé axonometrie, vlastnosti téles a zobrazeni, jako
jsou osova afinita a stiedova kolineace.

Préce je rozdélena do tii kapitol. Prvni kapitola zavadi kosoithlou axonometrii a se-
znamuje se zobrazenim zakladnich prvku. Druhda kapitola fesi pomocné konstrukce
nutné k feseni uloh. Tteti kapitola se pak zabyva jednotlivymi fesenymi tilohami.

Vsechny obrazky jsou narysovany v programu AutoCAD, text je vysdzen typogra-

fickym programem TgX.



Kapitola 1

Kosouhla axonometrie

V této césti se seznamime se zobrazovaci metodou kosouhlé, nékdy téz sikmé nebo
klinogonalni axonometrie. Kosotihla axonometrie se stejné jako pravoihla axonometrie
uziva prevazné k ziskani nazornych obrazi napf. ve strojirenstvi nebo jinych tech-

nickych oborech.

1.1 Zakladni pojmy

Necht je dan rozsifeny euklidovsky prostor £ a v ném kartézskd soustava soutradnic
{0, z,y, z} ajiurcené souradnicové roviny 7 = (xy), v = (z2), u = (yz). Kosouhld axo-
nometrie je, stejné jako pravoihla axonometrie, rovnobézné promitani, které promita na
jednu prumétnu ruznobéznou se souradnicovymi rovinami a neprochézejici po¢atkem.
Tu nazyvdme axonometrickd primétna a znacime ji p, p C E. Smér promitani ¥s do
axonometrické priumétny je k nf kosy, *s Jf p, ¥s £ p. (Obr. .

Axonometricky trojuhelnik XY Z, X =xNp, Y =yNp, Z =20 p je stejné jako
v pravothlé axonometrii ostrothly.

Bod A promitame kosothle do axonometrické prumétny p, kterou ztotoznujeme
s ndkresnou, do bodu A* a pravoihle do pomocné prumétny = do bodu A;. Ten pak
opét promitdme kosotihle do axonometrické pramétny do bodu A¥. Bodu A* fikdme
kosotihly primét bodu A a bodu A¥ f#{kdme kosothly primét pidorysu (nékdy téz
kosouhly pudorys) bodu A. Oba pruméty lezi na ordindle rovnobézné s osou z.

Podobné pak promitdme-li pravothle do pomocné prumétny v, resp. pu, ziskame
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Obrazek 1.1: Prumétny a smér promitdni.

kosotihly narys A%, resp. kosothly bokorys A% bodu A, ktery lezf na ordinale rovnobézné
S 0sou Y, resp. .

Kosotihly prumét OF pocatku O se lisf od pravouhlého primétu O%. Kosotihlé
pruméty os a2 y¥ ¥ nejsou tedy vyskami axonometrického trojihelniku XY Z. Bod
OF miize lezet i na strané nebo ve vrcholu axonometrického trojihelniku, je-li smér *s
rovnobézny s jednou nebo dvéma pomocnymi prumétnami.

Protoze pravouhly primét sméru *s do axonometrické primétny je ddn smérem
O°OF, lezi pravouhly a kosouhly primét bodi na pifmce tohoto sméru.

Kosothla axonometrie je dana axonometrickym trojihelnikem a kosoihlym prumeé-
tem OF pocatku. Pak mtZzeme sestrojit jak osovy kifz, tak i jednotky na osach, a tedy
zobrazit kosouhly prumét kazdého utvaru, zname-li souradnice jeho bodi.

V praxi se nékdy kosouhld axonometrie urcuje pouze osovym kiiZzem a jednotkami na

osach. Opravnénost této volby je oduvodnéna platnosti fundamentalni véty rovnobézné

axonometrie.



Véta 1.1.1 (Pohlkova)
TTi usecky v roviné, které maji spole¢ny jeden krajni bod a které nelezi v piimce, lze
pokladat za rovnobézny prumét tii vzajemné kolmych a stejné velikych tusecek, které

maji jeden krajni bod spolecny.

Zatrezova metoda

7 Pohlkovy véty je mozné odvodit, ze tzv. zarezova metoda dava ze dvou ruznych
rovnobéznych prumétu utvaru jeho ndzorny prumét v rovnobézné axonometrii.

Zvolme dva libovolné rovnobézné pruméty zobrazovaného itvaru (napf. narys a bo-
korys) a libovolné je umistéme do ndkresny. Nésledné zvolme dva ruznobézné smeéry
s1 = AA') s = AA”. Hledanym prumétem bodu je prusecik piimek danych sméry

s1, so a odpovidajicich si bodu v ndryse a bokoryse. (Obr.

A’

Obrazek 1.2: Zdrezovd metoda.
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1.2 Zobrazeni zakladnich prvku

V kosotihlé axonometrii se bod A v prostoru zobrazi jako usporadand dvojice bodu
A* - AF. Oba priuméty lezi na ordindle rovnobézné s osou z*. Zbyvajici priméty bodu
A do pomocnych prumétem ziskame doplnénim soutradnicového kvadru, jehoz hrany

jsou rovnobézné se soufadnicovymi osami. (Obr. (1.3)

Obrazek 1.3: Zobrazent bodu.

Piimka p je urCena dvéma ruznymi body, které na ni lezi. Obvykle se vsak zadava
kosotihlym primétem p* pifmky p a kosoihlym primétem pudorysu pt pifmky p.
Kosouhlym prumétem piimky sméru promitani je bod. Kazda primka muze mit az 4
stopniky. Axonometricky stopnik znacime R a je to prusecik piimky s axonometrickou
prumétnou. Pudorysny, narysny a bokorysny stopnik znac¢ime po tfadé P, N, M a jsou

to pruseciky s prvni, resp. druhou, resp. tfeti pomocnou prumétnou. (Obr. [1.4)
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Obrazek 1.4: Zobrazeni primky.

Rovina rovnobéznd s kosoihlym smérem promitani se zobrazi jako piimka, kazda
jind rovina se zobrazi jako axonometricka prumétna. K praktickému reseni 1loh se pak
nejcastéji vyuziva stop roviny. Kazdd rovina muze mit az 4 stopy. Axonometrickou
stopu roviny « zna¢ime r® a je to prusecnice roviny s axonometrickou prumétnou.
Pudorysnou, narysnou a bokorysnou stopu znac¢ime po fadé p®, n® m® a jsou to

prusecnice s prvni, resp. druhou, resp. tfet{ pomocnou prumétnou. (Obr. |1.5)

12



Obrazek 1.5: Zobrazent roviny.
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Kapitola 2

Pomocné konstrukce

2.1 Otoceni pomocné prumétny do axonometrické
prumeétny

Sestrojujeme-li utvar lezici v nékteré pomocné prumétné =, v, p, nebo nanasime-
li jednotky na soutradné osy x, y, z, oto¢ime pomocnou prumétnu do axonometrické
prumétny. V otoCené pomocné prumétné se nam velikosti tisecek a uhlu nezkresluji.

Protoze v kosouhlé axonometrii neplati véta o pravoihlém prumétu pravého uhlu,
budeme muset nékteré konstrukce prevadét do pravouhlé axonometrie.

Prvni pomocnou prumétnu otoé¢ime do axonometrické prumétny kolem jeji axono-
metrické stopy XY. Abychom ziskali otoceny obraz bodu O, musime nejdiiv sestrojit
pravouhly prumét bodu O do axonometrické prumétny. Stejné jako v pravouhlé axo-
nometrii jej ziskame jako prusecik vysek trojuhelniku XY Z a znacime jej O®. Otoceny
bod O je pak jeden z pruseciku kolmice na stopu XY prochazejici bodem O® a Thale-
tovy kruznice sestrojené nad dseckou XY. Otoceny bod O znacime (O), otocenou osou
z, resp. y je pifmka (O)X, resp. (O)Y. (Obr.

Prameéty dalsich bodu ziskdme pomoci osové afinity, osa afinity je axonometricka
stopa XY a dvojice odpovidajicich si bodt je OF, (O).

Obdobné muzeme otocit i druhou a treti pomocnou prumétnu.

14



Obrazek 2.1: Otoceni w do azx. prumétny.

2.2 Sklapéni do axonometrické prumétny

Pottebujeme-li zjistit vzdalenost bodu souradné osy od axonometrické prumétny,
ziskdme ji pomoci sklopeni pravothle promitaci roviny dané osy do axonometrické
prumétny.

Nejprve sestrojime pravothly prumét bodu O. O*X je pravouhlym prumétem osy x,
ktery znac¢ime x®. Prusecik pravothle promitaci roviny osy x a stopy Y Z axonometrické
roviny oznacme £“. Protoze trojuhelnik X O¢ je pravothly s pravym thlem pti vrcholu
O, nélezi sklopeny bod O Thaletové kruznici nad X¢. Piimka (O)X je pak sklopenou
osou z. Skute¢nd vzdalenost bodu A od axonometrické prumétny je pak rovna |(A)A?%|.
(Obr.

Obdobné postupujeme i pti sklapéni souradnych os y a z.

Pottebujeme-li zjistit vzdalenost bodu, ktery nelezi na souradné ose od axono-
metrické prumétny, prolozime timto bodem rovinu rovnobéznou s axonometrickou

prumétnou a najdeme jeji prusecik s nékterou souradnou osou. Vzdalenost tohoto

15



pruseciku od axonometrické prumétny je pak rovna hledané vzdélenosti daného bodu

od axonometrické prumétny.

Obrazek 2.2: Sklopeni osy x.

2.3 Otoceni obecné roviny do axonometrické
prumeétny

Sestrojujeme-li utvar, ktery lezi v obecné roviné «, otacime ji do axonometrické
prumétny kolem jeji axonometrické stopy. Postaci ndm ziskat otoCeny prumét jednoho
bodu roviny, ktery nelezi na axonometrické stopé. Timto bodem muze z praktickych
duvodu byt tfeba prusecik roviny s nékterou souradnou osou.

Sestrojime prusecik roviny « s osou x, oznacime jej (. Najdeme jeho pravotihly
prumét a ve sklopeni zjistime jeho vzdalenost od axonometrické prumétny. Protoze
v pravouhlé axonometrii je rovina otac¢eni bodu () promitaci, zobrazi se jako primka

g kolmé na axonometrickou stopu roviny a. Stredem otaceni je prusecik S primky ¢

16



a stopy r®. Kolmo na primku ¢ naneseme vzdéalenost |Q%(Q)], tim ziskdme bod [Q)].
Polomérem otéceni je pak vzdalenost |S[Q]|. Otoceny bod @ oznacime Q. (Obr.
Dalsi oto¢ené body roviny a ziskdme pomoci osové afinity s osou r® a dvojici od-

povidajicich si bodu QF, Q.

Obrazek 2.3: Otoceni roviny o do azx. prumétny.

2.4 Prunik primky s rovinou

K ziskani pruseciku piimky a s rovinou «, vyuzijeme tzv. metodu kryci piimky.

Médme dvé moznosti, jak kryci pifmku zvolit. (Obr.

e Zvolime krycf pifmku p C «, p* = a*. Najdeme jeji kosotihly ptdorys p}. Potom

Pk Nak = RY. Primét R* priseciku pifmky a roviny pak lezi na ordinale.

e Nebo zvolime kryci pifmku ¢ C «, ¢f = a¥. Najdeme jeji kosodhly pramét g~

Pak ¢* N a* = R* je kosotihly primét hledaného priseciku piimky a roviny.

17



Obrazek 2.4: Konstrukce kryci primky.

2.5 Skutec¢na velikost tsecky

Pri zjistovani vzdalenosti bodi A, B si opét pomuZeme pievedenim tilohy do pravou-
hlé axonometrie. Nejprve najdeme pravouhly prumeét primky p, p = AB tak, Zze najdeme
jeji axonometricky stopnik R a pravothly prumét néjakého dalsiho bodu, napi. A. Pak
zjistime vzdélenost bodu A od axonometrické prumétny, tj. prolozime bodem A rovinu
p' rovnobéznou s axonometrickou prumétnou a najdeme jeji prusecik A’ s nékterou osou,
napi. z. Vzdélenost bodu A’ od axonometrické prumétny uréime ve sklopeni pravothle
promitaci roviny osy z, |A'p| = |Ap|. Tuto vzdélenost naneseme kolmo na pravotihly
primét pifmky p v bodé A, éfmz ziskame sklopeny bod [A]. [A]R* = [p] je sklopend
pifmka p. Dals{ body pifmky nandsime na [p] ve sméru A¥[A]. (Obr.

18



Obrazek 2.5: Skutecnd vzddlenost usecky AB.

2.6 Primka kolma k roviné

Protoze v kosotihlé axonometrii neplati véta o pravotihlém prumétu pravého uhlu,
nejsme tak na rozdil od pravotihlé axonometrie schopni tict, jaky smér bude mit hledany
prumét kolmice k£ na rovinu « prochazejici bodem A. Misto toho vyuzijeme dvakrat
metodu vysek a tim ziskdme dva pomocné pruméty kolmice k, odtud pak kosothly

primét k*.

Metoda pruseciku vysek

Znédme-li v néjaké roviné dvé dvojice piimek m L m’; n L n’, m §f n, m }f n’, pak
lze v této roviné bodem L sestrojit kolmici k£ k dané piimce [. Zvolime trojihelnik
012, O1 || m, O2 || n, 12 || I. Sestrojime v ném vysky jako pfimky vy || n’, vy || m/,
které se protinaji v ortocentru V. Jim prochézi i tieti vyska vp = VO. Protoze primka
k prochazejici bodem L je rovnobézna s tieti vyskou vp v trojihelniku O12, je tedy

kolmd na piimku /, [ || 12. (Obr.
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Obrazek 2.6: Metoda pruseciku vysek.

Takové dvé dvojice kolmic jsme schopni nalézt v pomocnych prumétnach a tak ziskat
kosothly prumét pudorysu, resp. narysu, resp. bokorysu primky k.

Méjme dénu rovinu « jejimi stopami a bod A jeho kosouhlym prumétem a koso-
uhlym pudorysem. Uvazujeme rovinu A kolmou na XY prochazejici osou z. Primka
d = AN je jednou stranou uvazovaného trojihelniku a smér XY je na ni kolmy. Jako
druhou stranu vezmeme napt. osu x a smér kolmy je tak smér osy y. Za treti stranu
polozime pudorysnou stopu roviny «. Zvoleny trojihelnik ozna¢me O12, kde 1 = dNp®
a 2 = xNp*. Vysku na stranu O1 sestrojime jako spojnici vrcholu 2 a pruseciku vysek
na zbyvajici strany. Prvni prumét kolmice k na rovinu « je pak ddn smérem kolmym
na p® a pudorysem bodu A.

Obdobné sestrojime néktery z dalsich pomocnych priumétu primky p.

Ze dvou pomocnych prumétu sestrojime kosothly prumét piimky p. (Obr.

20



Obrazek 2.7: Sestrojeni kolmice k na rovinu «.

2.7 Rovina kolma k primce

Pii této konstrukci opét vyuzijeme metodu pruseciku vysek.
Méjme danu piimku k a bod A jejich kosotihlymi prumeéty a kosouhlymi pudorysy.
K sestrojeni roviny «, k L « nejprve najdeme ve dvou pomocnych prumétnach sméry

kolmé k ptimce k. Bodem A prolozime libovolnou hlavni pfimku roviny « a najdeme jeji

stopnik. Jim prochdzi stopa roviny. Pomoci ni uré¢ime zbylé stopy roviny a. (Obr. [2.8))

21



Obrazek 2.8: Sestrojent roviny a kolmé k primce k.

22



Kapitola 3
Resené tlohy

Uloha 1 Jsou ddny body All;1;3], B[—2;—3;4], C[—4;2; —2], D[3; —4; —1]. Zobrazte

vSechny jejich prumeéty.
Reseni:

e Nalezneme pravouhly prumét pocatku jako prusecik vysek trojuhelniku XY Z
a otoCime prvni a druhou pomocnou prumétnu kolem jejich axonometrickych

stop do axonometrické prumétny.

e Na otocené soutadnicové osy naneseme jednotky a ve sméru afinit OF(O), resp.

OF[O] je preneseme na kosotihlé priméty os.

e Postupné nanasime na souradnicové osy odpovidajici souradnice bodu a dopliu-

jeme je na souradnicové kvadry.

23
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Uloha 2 Zobrazte viechny priméty a stopniky pifmky p dané kosothlym priimétem

a kosothlym pudorysem.

ResSeni:

Pudorysny stopnik uréime jako prusecik kosouhlého prumeétu piimky p a jejiho

pudorysu.

Uréime druhy a tieti prumét pudorysného stopniku.

Uréime pudorys narysného a bokorysného stopniku jako prusecik pudorysu piimky

p s osou x, resp. y. Jejich kosouhlé pruméty lezi na ordindle.

e Narysnd, resp. bokorysnd stopa je urcena body PyN*, resp. P¥MF*.

25



Uloha 3 Je dén bod M kosodhlym priumétem a kosodhlym pidorysem. Bodem M

ved'te pifmku p rovnobéznou s rovinou 7 tak, aby jeji odchylka s rovinou v byla 70°.
Rozbor:

Protoze primka p je rovnobézna s rovinou m, je hlavni piimkou prvni osnovy této
roviny. Celou tlohu tedy muzeme pievézt do pudorysny a hledat primku ¢, jez prochazi

pudorysem bodu M a s osou z svira odchylku 70°.
Reseni:

e Otoc¢ime pomocnou prumeétnu 7 do axonometrické prumeétny. Oto¢ené body zna-
¢ime s indexem 0. Otoceni urci osovou afinitu s osou XY a dvojici odpovidajicich

si bodi OF, O,.

e V otoceni sestrojime piimky ¢, ¢’ tak, Ze prochazeji pudorysem bodu M a s osou

x sviraji pozadovany uhel.

e V osové afinité se primky ¢, ¢’ zobrazi na pudorysy hledanych piimek p, p'.
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Uloha 4 Sestrojte stopy roviny p = (ABC). Body A, B, C jsou dany svymi kosoihlym
prumeéty a kosouhlymi pudorysy.

Resenti:

e Sestrojime pifmku b = AB a najdeme jeji ptidorysny stopnik *P* a bokorysny
stopnik *M*.

e Dile sestrojime piimku ¢ = AC' a najdeme jeji pudorysny stopnik ¢P*.

e Pudorysnd stopa roviny p je dana pudorysnymi stopniky piimek b, c. Bokorysna
stopa je ddna bokorysnym stopnikem piimky b a pruseéikem pudorysné stopy s

osou y. Narysna stopa je dana prusecikem pudorysné stopy s osou x a prusecikem

bokorysné stopy s osou z.
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Uloha 5 Bodem A[1;3; 2] ved'te rovinu o rovnob&znou s rovinou p = (3; —3; 3).
Rozbor:
V rovnobézném promitani se nam rovnobézné primky zobrazi jako rovnobézné. Ro-
viny p, o jsou rovnobézné, takze budou mit i rovnobézné stopy.
Reseni:
e Sestrojime rovinu p a bod A.

e Bodem A prolozime hlavni piimku A% || p prvni osnovy roviny o a najdeme jeji

bokorysny stopnik M.

e Bokorysnym stopnikem M prochézi bokorysné stopa m? || m”. Sestrojime zby-

vajici stopy.

1Zadan{ roviny soutadnicemi (x¢; yo; 20) oznacuje hodnoty, ve kterych rovina protin souradné osy.
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Uloha 6 Zobrazte rovnobéznik ABC D, ktery lez{ v roviné p. p=(800;4), A;[6;1;0],
B1[5;4,5; 0], C1[1;4;0].

ResSeni:

Sestrojime rovinu p a kosouhlé pruméty bodu Ay, By, C}.

Pomoci hlavni ptimky A” prvni osnovy prolozené bodem C' zjistime jeho kosoihly

prumeét.

Kosothlé pruméty dalsich bodu ziskdme uzitim osové afinity s osou p” a dvojici

odpovidajicich si bodia CF, C*.

Doplnime na rovnobéznik tak, ze A¥B* || C*D* B*C* || A*D*.
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Uloha 7 Sestrojte prusecik piimky p = MN s rovnobéznikem ABCD. A[3,5;0,5; 2],
B[2,5;3; 1], C[0,5;4,5; 3], M[4,5;1,5;8], N[1,5;2,5;1,5]. Stanovte viditelnost.

ResSeni:

Sestrojime rovnobéznik ABCD a primku p.
Zobrazime kryci pifmku r, r¥ = p¥, r C (ABC).
Prusecikem rovnobézniku ABCD a piimky p je bod R, R=pnNr.

Uréime viditelnost. Ta se méni v pruseciku. Bod 1 primky p ma veétsi z-ovou
%
soutradnici nez bod 1’ rovnobézniku ABCD. Proto polopiimka Rl je viditelna.

Opacnd poloptimka, resp. jeji ¢ast schovana za rovnobéznikem, neni viditelna.

32



Uloha 8 Sestrojte prusek trojuhelniku ABC' s rovnobéznikem KLMN. Body A, B,
C, K, L, M jsou dany svymi kosouhlymi pruméty a kosothlymi pudorysy.

Resenti:
e Sestrojime trojihelnik ABC' a rovnobéznik K LM N

e Za pomoci kryci pifmky p, pf = AYBY p C (KLM) sestrojime prisecik P,
P=pnAB.

e Za pomoci kryci pifmky ¢, ¢¢ = AYCF, p C (KLM) sestrojime prisecik Q,
Q=qNAC.

e Prusecnici rovin (ABC) a (KLM) je piimka r, r = P(). Prusekem je pak tsecka
PQ.

e Urcime viditenost. Ta se méni v prusecnici. Napf. pro piizeni strany AC, KN
plati, ze bod 1 strany AC' m& vétsi z-ovou soutadnici, nez bod 1’ strany K N. Proto

¢ast strany AC' obsahujici bod 1 je viditelna a ¢ast strany KN neni viditelna.
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Uloha 9 V roving p = (00;6;4) zobrazte nad useckou AB, AB C p, A[4,5;2;7],
B[2,5;4;7] ctverec.

ResSeni:

Sestrojime rovinu p a v ni body A, B (napf. pomoci hlavnich primek).

Pomoci bodu @, ) = 2N p oto¢ime rovinu p kolem jeji axonometrické stopy .

e Pomoci osové afinity s osou r” a dvojici odpovidajicich si bodi Qy, Q¥ ziskdme

oto¢ené pruméty bodu A, B.

V otoceni sestrojime nad A, B ¢tverec ABC'D a pomoci afinity vratime body C'

a D zpét.
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Uloha 10 Sestrojte pricku mimobézek p = AB a ¢ = CD prochazejici po¢atkem.
A[5;0; 7], B[0;3,5; 1], C[2;0;8], D[1;2;0].

Reseni:
e Sestrojime rovinu p, p = (OAB).
e Pomoci kryci pifmky r, ¥ = p¥, r C p sestrojime prisecik R = ¢ N p.

e Pricka mimobézek je piimka RO.
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Uloha 11 Zobrazte pravidelny Sestiboky hranol o vysce v = 7, s podstavou v pomocné

prumétné m o stiedu S[5; 5;0] a vrcholu A[2;2;0].
Reseni:

e V otoceni sestrojime pravidelny Sestithelnik o stfedu Sy a vrcholu A,. (Pro

ptrehlednost v obrazku pouze body By, Fp.)

e Pomoci osové afinity s osou XY a dvojici odpovidajicich si bodu Opy, OF vratime

otocené body zpét.

Sestrojime bod horni podstavy A[2;2;7] a dolnime na hranol.

Urc¢ime viditelnost.
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Z.aver

Mym cilem bylo vytvorit préaci, kterd bude slouzit jako ivod do zobrazovaci metody
kosotihlé axonometrie.

Prace je rozdélena do tii kapitol. Prvni kapitola se zabyva teoretickou ¢asti a sezna-
muje nas se zobrazovaci metodou kosouhlé axonometrie. Je zde vysvétlena zarezova
metoda, ¢ili zpusob, jak rychle zobrazit utvar v kosouhlém promitani, zname-li jeho
dva rovnobézné pruméty. Déle je zde ukazano, jak se v kosotihlé axonometrii zobrazi
bod, piimka a rovina.

Druhé kapitola se vénuje pomocnym konstrukcim, jako jsou nalezeni pruseciku,
vzdalenost dvou bodu, sklopeni a oto¢eni roviny do axonometrické prumétny a zobra-
zeni primky kolmé k roviné, resp. roviny kolmé k piimce. Tyto konstrukce jsou nezbytné

Posledni, tieti kapitola obsahuje jedenact feSenych tiloh v kosoihlé axonometrii, na

kterych si ¢tenar muze tuto zobrazovaci metodu a nabyté znalosti vyzkouset.
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Prilohy

Uloha 1 Jsou ddny body All;1;3], B[—2;—3;4], C[—4;2; —2], D[3; —4; —1]. Zobrazte

vsechny jejich pruméty.




Uloha 2 Zobrazte viechny priméty a stopniky pifmky p dané kosothlym priimétem

a kosothlym pudorysem.




Uloha 3 Je dén bod M kosodhlym priumétem a kosodhlym pidorysem. Bodem M

ved'te pifmku p rovnobéznou s rovinou 7 tak, aby jeji odchylka s rovinou v byla 70°.




Uloha 4 Sestrojte stopy roviny p = (ABC). Body A, B, C jsou dany svymi kosoihlym
prumeéty a kosouhlymi pudorysy.




Uloha 5 Bodem A[1;3;2] ved'te rovinu ¢ rovnobéznou s rovinou p = (3; —3; 3).




Uloha 6 Zobrazte rovnobéznik ABCD, ktery lezi v roviné p. p = (8;00;4), A1[6;1;0],
B1[5;4,5; 0], C1[1;4;0].




Uloha 7 Sestrojte prusecik piimky p = MN s rovnobéznikem ABCD. A[3,5;0,5; 2],
B[2,5;3; 1], C[0,5;4,5; 3], M[4,5;1,5;8], N[1,5;2,5;1,5]. Stanovte viditelnost.




Uloha 8 Sestrojte prusek trojuhelniku ABC' s rovnobéznikem KLMN. Body A, B,
C, K, L, M jsou dany svymi kosouhlymi pruméty a kosothlymi pudorysy.




Uloha 9 V roving p = (00;6;4) zobrazte nad useckou AB, AB C p, A[4,5;2;7],
B[2,5;4;7] ctverec.




Uloha 10 Sestrojte pricku mimobézek p = AB a ¢ = CD prochazejici po¢atkem.
A[5;0; 7], B[0;3,5; 1], C[2;0;8], D[1;2;0].




Uloha 11 Zobrazte pravidelny Sestiboky hranol o vysce v = 7, s podstavou v pomocné

prumétné m o stiedu S[5; 5;0] a vrcholu A[2;2;0].
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